MTHSC 3110 Section 3.1 – Determinants

Kevin James

Kevin James MTHSC 3110 Section 3.1 – Determinants

★ 문 ► ★ 문 ►

EXERCISE

Perform row reduction on the following matrices in order to characterize invertibility.

$$\begin{array}{cc}
 1 & \left(\begin{array}{cc}
 a & b \\
 c & d
 \end{array}\right)$$

イロト イヨト イヨト イヨト

EXERCISE

Perform row reduction on the following matrices in order to characterize invertibility.

イロト イヨト イヨト イヨト

Suppose that A is a 3×3 matrix as in the previous exercise. The determinant of A is defined by

$$\Delta(A) = aei + bfg + cdh - ceg - afh - dbi.$$

イロト イヨト イヨト イヨト

Suppose that A is a 3×3 matrix as in the previous exercise. The determinant of A is defined by

$$\Delta(A) = aei + bfg + cdh - ceg - afh - dbi.$$

Fact

A is invertible if and only if $\Delta(A) \neq 0$.

イロト イヨト イヨト イヨト

Suppose that A is a 3×3 matrix as in the previous exercise. The determinant of A is defined by

$$\Delta(A) = aei + bfg + cdh - ceg - afh - dbi.$$

Fact

A is invertible if and only if
$$\Delta(A) \neq 0$$
.

Note

Suppose that A is a 3×3 matrix as before. Then,

$$\Delta(A) = a \cdot \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \cdot \det \begin{pmatrix} d & g \\ f & i \end{pmatrix} + c \cdot \det \begin{pmatrix} d & e \\ g & h \end{pmatrix}.$$

イロト イヨト イヨト イヨト

We define the ij^{th} minor of and $n \times n$ matrix A as

	(a _{1,1}		$a_{1,j-1}$	$a_{1,j+1}$		$a_{1,n}$
	a _{2,1}		a _{2,j-1}	$a_{2,j+1}$		a _{2,n}
	:		÷	÷		÷
$A_{ij} =$	<i>a</i> _{<i>i</i>-1,1}		$a_{i-1,j-1}$	$a_{i-1,j+1}$		a _{i-1,n}
	$a_{i+1,1}$	• • •	$a_{i+1,j-1}$	$a_{i+1,j+1}$	•••	$a_{i+1,n}$
	÷		$a_{i-1,j-1} \\ a_{i+1,j-1} \\ \vdots$	÷		÷
	$\langle a_{n,1} \rangle$	•••	a _{n,j-1}	$a_{n,j+1}$		a _{n,n})

イロン イロン イヨン イヨン 三日

We define the ij^{th} minor of and $n \times n$ matrix A as

	/ a _{1,1}		$a_{1,j-1}$	$a_{1,j+1}$		$a_{1,n}$
	a _{2,1}		a _{2,j-1}	$a_{2,j+1}$		a _{2,n}
	÷		÷	÷		÷
$A_{ij} =$	$a_{i-1,1}$		$a_{i-1,j-1}$ $a_{i+1,j-1}$	$a_{i-1,j+1}$		a _{i-1,n}
	$a_{i+1,1}$	• • •	$a_{i+1,j-1}$	$a_{i+1,j+1}$	•••	a _{i+1,n}
	÷		÷	÷		÷
((a _{n,1}		$a_{n,j-1}$	$a_{n,j+1}$		a _{n,n})

DEFINITION

Suppose that A is an $n \times n$ matrix. Then,

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \cdot \det(A_{1j}).$$

EXAMPLE

Compute the det(A) where $A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 2 & 0 & 3 & 0 \\ 1 & 2 & 0 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$.

> < 물 > < 물 >

We define the (i, j)th cofactor of A to be

$$C_{ij} = (-1)^{i+j} \det(A_{ij}).$$

ヘロナス 聞き スポチス ポイ

Э

We define the (i, j)th cofactor of A to be

$$C_{ij} = (-1)^{i+j} \det(A_{ij}).$$

Theorem

Suppose that A is an $n \times n$ matrix. Then we can compute the determinant of A by expanding by cofactors along any row or column of A. That, is,

- 1 det(A) = $\sum_{i=1}^{n} a_{ij} C_{ij}$ i is fixed.
- 2 det $(A) = \sum_{i=1}^{n} a_{ij}C_{ij}$ j is fixed.

・ 同 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

Compute det(A) where
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 1 \end{pmatrix}$$
.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

EXAMPLE

Compute det(A) where
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 1 \end{pmatrix}$$

Theorem

If A is triangular, then $det(A) = a_{11} \cdot a_{22} \cdot \cdots \cdot a_{nn}$.

<ロ> <四> <四> <四> <三</td>