MTHSC 3110 SECTION 3.2 – PROPERTIES OF DETERMINANTS

Kevin James

Suppose that A and B are $n \times n$ matrices and that B is obtained from A by performing a single elementary row operation \mathcal{R} .

- **1** If \mathcal{R} is $R_i \leftrightarrow R_j$ then $\det(A) = -\det(B)$.
- 2) If \mathcal{R} is $R_i + cR_j$ then det(A) = det(B).
- 3 If \mathcal{R} is cR_i then $det(A) = \frac{1}{c} det(B)$.

Suppose that A and B are $n \times n$ matrices and that B is obtained from A by performing a single elementary row operation \mathcal{R} .

- **1** If \mathcal{R} is $R_i \leftrightarrow R_j$ then $\det(A) = -\det(B)$.
- 2) If \mathcal{R} is $R_i + cR_i$ then det(A) = det(B).
- 3 If \mathcal{R} is cR_i then $det(A) = \frac{1}{c} det(B)$.

EXAMPLE

Compute det(*A*) where
$$A = \begin{pmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{pmatrix}$$
.

- **2** $\det (E_{R_i+cR_i}) = 1.$
- **4** If $A \xrightarrow{\mathcal{R}} B$, then $\det(B) = \det(E_{\mathcal{R}}) \det(A)$.

- **2** $\det (E_{R_i+cR_i}) = 1.$
- $\mathbf{3} \det (E_{cR_i}) = c.$
- **4** If $A \xrightarrow{\mathcal{R}} B$, then $det(B) = det(E_{\mathcal{R}}) det(A)$.

Note

Given an $n \times n$ matrix A, we can obtain a row echelon form of A, using only row replacement and row interchange operations.

Suppose that A is an $n \times n$ matrix and that U is an echelon form of A obtained through the use of row replacements and row interchanges only. Let r denote the number of row interchanges used to obtain U. Then,

$$\det(A) = (-1)^r \cdot u_{11} \cdot u_{22} \cdot \cdots \cdot u_{nn}$$

Suppose that A is an $n \times n$ matrix and that U is an echelon form of A obtained through the use of row replacements and row interchanges only. Let r denote the number of row interchanges used to obtain U. Then,

$$\det(A) = (-1)^r \cdot u_{11} \cdot u_{22} \cdot \dots \cdot u_{nn}$$

$$= \begin{cases} (-1)^r * \text{ product of pivots in } U & \text{if A is invertible,} \\ 0 & \text{if A in singular.} \end{cases}$$

Suppose that A is an $n \times n$ matrix and that U is an echelon form of A obtained through the use of row replacements and row interchanges only. Let r denote the number of row interchanges used to obtain U. Then,

$$\det(A) = (-1)^r \cdot u_{11} \cdot u_{22} \cdot \dots \cdot u_{nn}$$

$$= \begin{cases} (-1)^r * \text{ product of pivots in } U & \text{if A is invertible,} \\ 0 & \text{if A in singular.} \end{cases}$$

COROLLARY

Suppose that A is an $n \times n$ matrix. Then A is invertible if and only if $det(A) \neq 0$.

If A has two rows or two columns the same, then det(A) = 0 and A is singular.

If A has two rows or two columns the same, then det(A) = 0 and A is singular.

Proof.

If A has two rows or two columns the same, then det(A) = 0 and A is singular.

Proof.

Note

When computing det(A), we can exploit the presence of many zeros in A.

If A has two rows or two columns the same, then det(A) = 0 and A is singular.

Proof.

Note

When computing det(A), we can exploit the presence of many zeros in A.

EXERCISE

Compute
$$\det(A)$$
 where $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 8 & -1 & 5 \\ 1 & 2 & 3 & 4 \end{pmatrix}$.

Suppose that A is an $n \times n$ matrix. Then A and its transpose have the same determinant (-i.e. $det(A^T) = det(A)$).

Suppose that A is an $n \times n$ matrix. Then A and its transpose have the same determinant (-i.e. $det(A^T) = det(A)$).

THEOREM

Suppose that A and B are $n \times n$ matrices. Then

$$\det(AB) = \det(A)\det(B).$$

Suppose that A is an $n \times n$ matrix. Then A and its transpose have the same determinant (-i.e. $det(A^T) = det(A)$).

Theorem

Suppose that A and B are $n \times n$ matrices. Then

$$\det(AB) = \det(A)\det(B).$$

EXAMPLE

Compute det(A), det(B) and det(AB) where $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ and

$$B = \left(\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array}\right).$$