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Definition

Suppose that A = [~a1, ~a2, . . . , ~an] is an n × n matrix. For any
~b ∈ Rn, we define

Ai (~b) = [~a1, . . . , ~ai−1, ~b, ~ai+1, . . . , ~an].

Theorem (Cramer’s Rule)

Suppose that A is an n × n invertible matrix. For any ~b ∈ Rn, the
unique solution to A~x = ~b has entries given by

xi =
det(Ai (~b))

det(A)
.
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Proof.

We have

A · Ii (~x) =

[A~e1,A~e2, . . .A ~ei−1,A~x ,A ~ei+1, . . . ,A~en]

= [~a1, . . . , ~ai−1, ~b, ~ai+1, . . . , ~an]

= Ai (~b).

So, we have det(A) det(Ii (~x)) = det(Ai (~b)).

Since A is invertible, we may write det(Ii (~x)) = det(Ai (~b))
det(A) .

The theorem follows from noticing that det(Ii (~x)) = xi .
To see this, compute det(Ii (~x)) by expanding by cofactors along

the ith row.
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Example

Use Cramer’s rule to solve A~x = ~b where A =

(
2 −1
3 4

)
and

~b =

(
3

43

)
.

Example

Consider the linear system{
4sx1 + 2x2 = 1
5x1 + x2 = −1

For which s is there a unique solution. For such s describe the
solution.
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Definition

Suppose that A is an n × n matrix. We define the n × n adjoint of
A as

Adj(A) =


C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn



=


C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn


T

,

where Cij = (−1)i+j det(Aij).
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Theorem

Suppose that A is an invertible n × n matrix. Then,

A−1 =
1

det(A)
Adj(A).

Proof.

Note

If A =

(
a b
c d

)
, then Adj(A) =

(
d −b
−c a

)
.
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Exercise

Compute Adj(A) and A−1 where A =

 1 0 0
2 3 0
3 2 1

.

Kevin James MTHSC 3110 Section 3.3 – Cramer’s Rule



Theorem

1 If A is a 2× 2 matrix, then the area of the parallelogram
determined by its columns (-i.e. having vertices at ~0 at at the
columns of A) is | det(A)|.

2 If A is a 3× 3 matrix, then the volume of the parallelepiped
determined by its columns is | det(A)|.

Theorem

1 Let T : R2 → R2 be a linear transformation with 2× 2 matrix
A. If S is a parallelogram in R2, then
Area(T (S)) = | det(A)|Area(S).

2 If T : R3 → R3, is a linear transformation and S is a
parallelepiped, then Vol(T (S)) = | det(A)|Vol(S).

Note

The result of theorem 10, holds for any region S of R2 for R3.
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Exercise

Suppose that a, b ∈ N. Find the area bounded by the ellipse

x2

a2
+

y2

b2
= 25.
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