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Goal

In this section, we generalize the notion of a vector space from the
examples we’ve seen (Rn), to include a number of other examples.
As a result, we’ll be able to apply tools from linear algebra (notions
like linear independence, spanning sets, linear transformation,
determinants) to these other examples.
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Definition

A vector space V is a non-empty set, together with two
operations, addition + and scalar multiplication ·, satisfying

1 ∀ ~u, ~v ∈ V , ~u + ~v ∈ V . (Closure under addition).

2 ∀ ~u, ~v ∈ V , ~u + ~v = ~v + ~u (+ is commutative).

3 ∀ ~u, ~v , ~w ∈ V , ~u + (~v + ~w) = (~u + ~v) + ~w (+ is associative).

4 ∃~0 ∈ V so that ∀~u ∈ V , ~u +~0 = ~0 + ~u = ~u (Additive identity).

5 ∀~u ∈ V , ∃ − ~u ∈ V so that ~u + (−~u) = ~0 (Additive inverse).

6 For every ~u ∈ V and c ∈ R, c~u ∈ V . (Closure under ·).

7 ∀~u, ~v ∈ V ; c ∈ R, c(~u + ~v) = c~u + c~v . (Distributive Law).

8 ∀~u ∈ V ; c , d ∈ R, (c + d)~u = c~u + d~u. (Distributive Law).

9 ∀~u ∈ V ; c , d ∈ R, c(d~u) = (cd)~u (Associativity of ·).

10 ∀~u ∈ V , 1 · ~u = ~u. (Scalar Identity).
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Note

There are a large number of conditions here. Checking whether a
particular set V is a vector space requires checking all of them. As
tedious as this may sometimes be, it is usually straightforward, and
the major point is the following:

If the elements of a non-empty set V can be added
together, multiplied by constants, and stay in V , and
things work nicely, then V is a vector space.
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Fact

For every ~u ∈ V and c ∈ R
1 0~u = ~0

2 c~0 = ~0

3 −~u = (−1)~u

Note

−~u refers to the additive inverse of the vector ~u. This shows that
we can choose to interpret it as (−1) times the vector ~u.
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Example

Let n ≥ 0 be an integer. Let

Pn = {a0 + a1t + · · ·+ ant
n | ai ∈ R}

be the set of polynomials of degree at most n.

The degree of p(t) is the highest power of t whose coefficient is
not zero.
If p(t) = a0 6= 0, then the degree of p(t) is zero.
If all the coefficients of p(t) are zero, then we call p(t) the zero
polynomial. Its degree is technically speaking undefined, but we
include it in the set Pn too.
We can add two polynomials.
We can multiply a polynomial by a scalar.
The set Pn is a vector space. The zero polynomial is the zero
vector.
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Example

Let P be the set of all polynomials, that is P =
⋃
n≥0

Pn. Then P is

also a vector space. Note also that P0 ⊆ P1 ⊆ P2 . . . and for each
n ≥ 0, Pn ⊆ P.

Example

Let
C ((0, 1)) = {f : (0, 1)→ R | f is continuous}.

We can define addition and scalar multiplication on C ((0, 1)) as
follows.

(f + g)(x) = f (x) + g(x); (cf )(x) = cf (x).

We can check that C (0, 1) is also a vector space. Here the zero
vector is the function which is zero on the interval (0, 1).
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Example

Let

V =

{
f ∈ C ((0, 1)) :

∫ 1

0
f (t) dt = 0

}
.

Then the sum of two functions with integral zero is a function
whose integral is zero.
If we multiply f by a scalar, we still get a function whose integral is
zero.
Addition and multiplication “work nicely”, so this is probably a
vector space.
Check that V is a vector space.
What is the zero vector?

Kevin James MTHSC 3110 Section 4.1 – Vector Spaces and Subspaces



Example

Let

V =

{
f ∈ C ((0, 1)) :

∫ 1

0
f (t) dt = 0

}
.

Then the sum of two functions with integral zero is a function
whose integral is zero.

If we multiply f by a scalar, we still get a function whose integral is
zero.
Addition and multiplication “work nicely”, so this is probably a
vector space.
Check that V is a vector space.
What is the zero vector?

Kevin James MTHSC 3110 Section 4.1 – Vector Spaces and Subspaces



Example

Let

V =

{
f ∈ C ((0, 1)) :

∫ 1

0
f (t) dt = 0

}
.

Then the sum of two functions with integral zero is a function
whose integral is zero.
If we multiply f by a scalar, we still get a function whose integral is
zero.

Addition and multiplication “work nicely”, so this is probably a
vector space.
Check that V is a vector space.
What is the zero vector?

Kevin James MTHSC 3110 Section 4.1 – Vector Spaces and Subspaces



Example

Let

V =

{
f ∈ C ((0, 1)) :

∫ 1

0
f (t) dt = 0

}
.

Then the sum of two functions with integral zero is a function
whose integral is zero.
If we multiply f by a scalar, we still get a function whose integral is
zero.
Addition and multiplication “work nicely”, so this is probably a
vector space.

Check that V is a vector space.
What is the zero vector?

Kevin James MTHSC 3110 Section 4.1 – Vector Spaces and Subspaces



Example

Let

V =

{
f ∈ C ((0, 1)) :

∫ 1

0
f (t) dt = 0

}
.

Then the sum of two functions with integral zero is a function
whose integral is zero.
If we multiply f by a scalar, we still get a function whose integral is
zero.
Addition and multiplication “work nicely”, so this is probably a
vector space.
Check that V is a vector space.

What is the zero vector?

Kevin James MTHSC 3110 Section 4.1 – Vector Spaces and Subspaces



Example

Let

V =

{
f ∈ C ((0, 1)) :

∫ 1

0
f (t) dt = 0

}
.

Then the sum of two functions with integral zero is a function
whose integral is zero.
If we multiply f by a scalar, we still get a function whose integral is
zero.
Addition and multiplication “work nicely”, so this is probably a
vector space.
Check that V is a vector space.
What is the zero vector?

Kevin James MTHSC 3110 Section 4.1 – Vector Spaces and Subspaces



Example

Let V = {f ∈ C ((0, 1)) | f (1/2) = 0}. Is this a vector space?

Example

Let V = {f ∈ C ((0, 1)) f (1/2) = 1}. Is this a vector space?

Example

Let V be the set of polynomials of degree exactly n. Is this a
vector space?

Example

Let Mm,n denote the set of m × n matrices. Does this form a
vector space?
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Subspaces of a Vector Space

Definition

If V is a vector space with respect to + and ·, with zero vector ~0,
then a set H ⊆ V is a subspace of V if

1 ~0 ∈ H

2 For every ~u, ~v ∈ H, ~u + ~v ∈ H.

3 For every ~u ∈ H and c ∈ R, c~u ∈ H.

Example

For any vector space V with zero vector ~0, the set {~0} is a
subspace of V .
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Example

If m ≤ n the Pm is a subspace of Pn.

Example

Let V = C ((0, 1)) and let H = {f ∈ C ((0, 1)) | f (1/2) = 0}.
Then H is a subspace of V .

Note

R2 is not a subspace of R3. Indeed, R2 is not even a subset of R3.
However, a plane through the origin in R3 is a subspace of R3.
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Definition

Suppose that ~v1, ~v2, . . . , ~vk ∈ V and c1, c2, . . . ck ∈ R. Then

k∑
i=1

ci~vi

is the linear combination of ~v1, . . . , ~vk with weights c1, . . . ck .

Definition

Span(~v1, . . . , ~vk) denotes the set of all linear combinations of
~v1, . . . , ~vk .

Theorem

If V is a vector space and if ~v1, ~v2, . . . , ~vk ∈ V , then
H = Span(~v1, . . . , ~vk) is a subspace of V .
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