MTHSC 3110 Section 4.2 – Null Spaces, Column Spaces and Linear Transformations

Kevin James

Kevin James MTHSC 3110 Section 4.2 – Null Spaces, Column Spaces and

DEFINITION

Let A be an $m \times n$ matrix. We define the *null space* of A as follows.

Nul
$$A = \{ \vec{x} \in \mathbb{R}^n \mid \text{ and } A\vec{x} = \vec{0} \}.$$

THEOREM

If A is an $m \times n$ matrix, then Nul A is a subspace of \mathbb{R}^n .

Proof.

Kevin James MTHSC 3110 Section 4.2 – Null Spaces, Column Spaces and

イロン 不同 とくほど 不同 とう

臣

EXAMPLE

Let
$$H = \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \middle| a - 2b + 5c = d \text{ and } c - a = b \right\}$$
. Show

that H is a subspace of \mathbb{R}^4 by expressing this as a null space of a matrix. Find a spanning set for this H.

EXAMPLE

Find a spanning set for the null space of

▲□ ▶ ▲ □ ▶ ▲ □ ▶

FINDING THE SPANNING SET FOR Nul(A)

- **1** Solve $A\vec{x} = \vec{0}$ and express the answer in vector parametric form.
- Precall that the non pivot columns correspond to free variables, say x_{i1}, x_{i2}, ... x_{ik}.
- 3 The solution set can then be expressed as

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_{i_1} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} + x_{i_2} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \dots + x_{i_k} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

4 Note that the vectors on the right span Nul(A).

▲冊▶ ▲臣▶ ▲臣▶

Note

If Nul(A) $\neq \{\vec{0}\}$, then the vectors in our construction of a spanning set form a linearly independent set.

Proof.

Let's call the vector on the right appearing next to x_{i_j} , $\vec{v_{i_j}}$. Note that the i_j entry in the vectors on the right is 0 except in $\vec{v_{i_j}}$. This vector has a 1 in the i_j position. So, if we have a dependence, say $\vec{0} = \sum_{m=1}^k w_{i_m} \vec{v_{i_m}}$, we can consider only the i_j^{th} entries to obtain $0 = \sum_{m=1}^k w_{i_m} [\vec{v_{i_m}}]_{i_j} = w_{i_j}$. Since this is true for $1 \le j \le k$, we see that the dependence must be the trivial one. So, $\{\vec{v_{i_1}}, \ldots, \vec{v_{i_k}}\}$ is an independent set.

イロン イヨン イヨン

SUMMARY

Our construction of a spanning set for Nul(A) produces a set of vectors which spans Nul(A) and is linearly independent. Further, if Nul(A) $\neq \{\vec{0}\}$, then the size of our spanning set is the number of free variables which is in turn equal to the number of non pivot columns.

向下 イヨト イヨト

COLUMN SAPCE

DEFINITION

Let A be an $m \times n$ matrix having column form $[\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n]$. Then the column space of A, denoted Col A is given by

Col
$$A = \text{Span}(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n).$$

THEOREM

If A is an $m \times n$ matrix, then Col A is a subspace of \mathbb{R}^m .

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

Note that Col $A = \{A\vec{x} : \vec{x} \in \mathbb{R}^n\}$, since any linear combination of the columns of A with weights x_1, x_2, \ldots, x_n is of this form. Clearly Col $A \subseteq \mathbb{R}^m$ (since the columns of A are in this space, so are all linear combinations of them). To show that Col A is a subspace of \mathbb{R}^m , we have to show $\mathbf{1} \ \vec{0} \in \text{Col } A$. **2** If $\vec{u}, \vec{v} \in \text{Col } A$ then $\vec{u} + \vec{v} \in \text{Col } A$. **3** If $c \in \mathbb{R}$ and $\vec{u} \in \text{Col } A$ then $c\vec{u} \in \text{Col } A$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

EXAMPLE

Find a matrix A so that Col
$$A = \left\{ \begin{pmatrix} 5a - b \\ 3b + 2a \\ -7a \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

Note

If $A = [\vec{a_1}, \dots, \vec{a_n}]$, then Col(A) is spanned by $\{\vec{a_1}, \dots, \vec{a_n}\}$. How do we find a linearly independent spanning set for Col(A)?

Note

For an $m \times n$ matrix A, Col $A = \mathbb{R}^m$ \iff if for every $\vec{b} \in \mathbb{R}^m$ the equation $A\vec{x} = \vec{b}$ has a solution \iff if the linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ with matrix A is <u>onto</u>.

・ロト ・回 ト ・ヨト ・ヨト

NOTATION

If W is a subspace of a vector space V, then we will write $W \le V$ or W < V if $W \ne V$.

EXAMPLE

$$\det A = \begin{pmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{pmatrix}$$

3 Give a vector in Col A.

イロト イヨト イヨト イヨト 三日

Example continued ...

Note that *A* row reduces to
$$\begin{pmatrix} 1 & 0 & 9 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

1 Describe Nul A in vector parametric form.

2 Let
$$\vec{u} = \begin{pmatrix} 3 \\ -2 \\ -1 \\ 0 \end{pmatrix}$$
 and $\vec{v} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$. Is either of \vec{u} or \vec{v} in either Col A or Nul A?

LINEAR TRANSFORMATIONS OF VECTOR SPACES

DEFINITION

Suppose that U and V are vector spaces. A transformation $T: U \longrightarrow V$ is said to be linear if

1 For all
$$\vec{u}, \vec{v} \in U$$
, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$

2 For all $\vec{u} \in U$ and $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.

Definition

Let U and V be vector spaces, and let $T: U \longrightarrow V$ be a linear transformation. The *kernel* of T is

$$\ker(T) := \{ \vec{u} \in U : T(\vec{u}) = \vec{0} \}.$$

The *range* of *T* is

$$\mathsf{range}(T) = \mathsf{im}(T) := \{T(\vec{u}) : \vec{u} \in U\}.$$

Fact

Given a linear transformation $T: U \longrightarrow V$,

1
$$ker(T) \le U$$
.
2 $im(T) \le V$.

Proof.

Kevin James MTHSC 3110 Section 4.2 – Null Spaces, Column Spaces and

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()