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Definition

Let A be an m×n matrix. We define the null space of A as follows.

Nul A = {~x ∈ Rn | and A~x = ~0}.

Theorem

If A is an m × n matrix, then Nul A is a subspace of Rn.

Proof.
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Example

Let H =




a
b
c
d


∣∣∣∣∣∣∣∣ a− 2b + 5c = d and c − a = b

. Show

that H is a subspace of R4 by expressing this as a null space of a
matrix. Find a spanning set for this H.

Example

Find a spanning set for the null space of

A =

 1 −2 2 −3 −1
2 −4 5 −6 −3
−3 6 −4 1 −7
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Finding the Spanning Set for Nul(A)

1 Solve A~x = ~0 and express the answer in vector parametric
form.

2 Recall that the non pivot columns correspond to free
variables, say xi1 , xi2 , . . . xik .

3 The solution set can then be expressed as
x1
x2

...
xn

 = xi1


u1
u2

...
un

+ xi2


v1
v2

...
vn

+ · · ·+ xik


w1

w2
...

wn


4 Note that the vectors on the right span Nul(A).
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Note

If Nul(A) 6= {~0}, then the vectors in our construction of a spanning
set form a linearly independent set.

Proof.

Let’s call the vector on the right appearing next to xij ~vij .
Note that the ij entry in the vectors on the right is 0 except in ~vij .
This vector has a 1 in the ij position.

So, if we have a dependence, say ~0 =
∑k

m=1 wim ~vim ,

we can consider only the ith
j entries to obtain

0 =
∑k

m=1 wim [ ~vim ]ij = wij .
Since this is true for 1 ≤ j ≤ k , we see that the dependence must
be the trivial one.
So, { ~vi1 , . . . ~vik} is an independent set.
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Summary

Our construction of a spanning set for Nul(A) produces a set of
vectors which spans Nul(A) and is linearly independent.

Further, if Nul(A) 6= {~0}, then the size of our spanning set is the
number of free variables which is in turn equal to the number of
non pivot columns.
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Column Sapce

Definition

Let A be an m × n matrix having column form [~a1, ~a2, . . . , ~an].
Then the column space of A, denoted Col A is given by

Col A = Span(~a1, ~a2, . . . , ~an).

Theorem

If A is an m × n matrix, then Col A is a subspace of Rm.
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Proof.

Note that Col A = {A~x : ~x ∈ Rn}, since any linear combination
of the columns of A with weights x1, x2, . . . , xn is of this form.

Clearly Col A ⊆ Rm (since the columns of A are in this space, so
are all linear combinations of them).
To show that Col A is a subspace of Rm, we have to show

1 ~0 ∈ Col A.

2 If ~u, ~v ∈ Col A then ~u + ~v ∈ Col A.

3 If c ∈ R and ~u ∈ Col A then c~u ∈ Col A.
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Example

Find a matrix A so that Col A =


 5a− b

3b + 2a
−7a

 : a, b ∈ R



Note

If A = [~a1, . . . , ~an], then Col(A) is spanned by {~a1, . . . , ~an}. How
do we find a linearly independent spanning set for Col(A)?

Note

For an m × n matrix A, Col A = Rm

⇐⇒ if for every ~b ∈ Rm the equation A~x = ~b has a solution
⇐⇒ if the linear transformation T : Rn −→ Rm with matrix A is

onto.
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Notation

If W is a subspace of a vector space V , then we will write W ≤ V
or W < V if W 6= V .

Example

Let A =

 2 4 −2 1
−2 −5 7 3

3 7 −8 6


1 Col A ≤
2 Nul A ≤
3 Give a vector in Col A.
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Example continued ...

Note that A row reduces to

 1 0 9 0
0 1 −5 0
0 0 0 1


1 Describe Nul A in vector parametric form.

2 Let ~u =


3
−2
−1

0

 and ~v =

 3
−1

3

. Is either of ~u or ~v in

either Col A or Nul A?
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Linear Transformations of Vector Spaces

Definition

Suppose that U and V are vector spaces. A transformation
T : U −→ V is said to be linear if

1 For all ~u, ~v ∈ U, T (~u + ~v) = T (~u) + T (~v)

2 For all ~u ∈ U and c ∈ R, T (c~u) = cT (~u).

Definition

Let U and V be vector spaces, and let T : U −→ V be a linear
transformation. The kernel of T is

ker(T ) := {~u ∈ U : T (~u) = ~0}.

The range of T is

range(T ) = im(T ) := {T (~u) : ~u ∈ U}.
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Fact

Given a linear transformation T : U −→ V ,

1 ker(T ) ≤ U.

2 im(T ) ≤ V .

Proof.
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