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DEFINITION

© Let V be a vector space and let {V;.v5,...,V,} C V. If the
only solution to the equation

X1V, +X2\72+"'+Xp\7p:0
is the trivial solution x; = xp = --- = x, = 0 then

{Vi,Va,...,V,} is said to be linearly independent.

@® If there is a non-trivial solution to the equation then the set of
vectors is said to be linearly dependent.

o’
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DEFINITION

© Let V be a vector space and let {V;.v5,...,V,} C V. If the
only solution to the equation

X1 1 +X2\72+"'+Xp\7p:0
is the trivial solution x; = xp = --- = x, = 0 then

{Vi,Va,...,V,} is said to be linearly independent.

@® If there is a non-trivial solution to the equation then the set of
vectors is said to be linearly dependent.

THEOREM

| A

Let V' be a vector space. Suppose that {Vi,Vs,...Vp} CV, p>2,
and that v, # 0. Then {Vi,Va,...,Vp} is linearly dependent if and
only if there is a1 < j < p so that V; is a linear combination of the
vectors Vi, Va, ..., Vj_1.
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Consider the vector space P3. Let

S={x*4+2x+3, xX*+1, x> +2x> + 4x + 7}.

S C Ps. Is it linearly dependent or linearly independent?
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EXAMPLE

Consider the vector space P3. Let

S={x®+2x+3, 3+1, x*+2x°> +4x +T7}.

S C Ps. Is it linearly dependent or linearly independent?

EXAMPLE

| A

Consider the vector space
V = {f :[0,1] — R so that f is continuous}

and let S = {sin(x),cos(x)} C V. Is this set linearly dependent or
linearly independent?

A\
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DEFINITION

Suppose that V is a vector space with W < V/, and that
B={w,v,...,vp,} € W. This ordered set of vectors is a basis
for W provided that

@ B is linearly independent, and
® Span(B) = W.
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DEFINITION

Suppose that V is a vector space with W < V/, and that
B={w,v,...,vp,} € W. This ordered set of vectors is a basis
for W provided that

@ B is linearly independent, and
® Span(B) = W.

EXAMPLE

| \

Let A= [a1,a>,...,4an| be an invertible n x n matrix. What does
the Invertible Matrix Theorem say about {a1, 3, ...,3ap}?
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DEFINITION

Suppose that V is a vector space with W < V/, and that
B={w,v,...,vp,} € W. This ordered set of vectors is a basis
for W provided that

@ B is linearly independent, and
® Span(B) = W.

EXAMPLE

| \

Let A= [a1,a>,...,4an| be an invertible n x n matrix. What does
the Invertible Matrix Theorem say about {a1, 3, ...,3ap}?

{€1,é,...,€é,} is a basis for R". Why?
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{1,x,x?,...,x"} is a basis for P,. Why?
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{1,x,x2,...,x"} is a basis for P,,. Why?

EXAMPLE

Let
1 1 2
=0 |, vw=|1|,i=1[1
1 0 1

Show that Span(\71, a, \73) = Span(_'l, \72)
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Let V be a vector space, and S = {Vq,o,...,Vp} C V, and let
H = Span(\71, \72, ceey ‘7p)

@ If there exists k so that v is a linear combination of the other
vectors in S, then

H = Span(\71, \72, P \7k_1, ‘7k—|—17 ocog \7p)

® If H # {0} then some subset of S is a basis for H.
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PROOF.

@ Suppose that & € H. We need to show that i is a linear
combination of vectors in Vi, ..., Vk_1, Vkt1 ..., V,. We know
that it is a linear combination of vectors in S.
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PROOF.

@ Suppose that & € H. We need to show that i is a linear
combination of vectors in Vi, ..., Vk_1, Vkt1 ..., V,. We know
that it is a linear combination of vectors in S.

® If S is linearly independent, then it is a basis. Otherwise,
there is a non-trivial linear combination of vectors in S giving
0, and hence there is some vector in S which can be written
as a linear combination of the others. Hence we can replace S
by a smaller set S’ which still spans H. Clearly we can
continue this process, and it has to stop either with S’ = ) (in
which case H = {0}) or with S’ a linearly independent set
spanning H, and hence a basis for H.
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BASES FOR NUL A

We already have seen how to find a basis for Nul A: row reduce A
to obtain a matrix in reduced row echelon form and use this to
express the null space in vector parametric form. The vectors
appearing will be the basis for Nul A.
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BASES FOR NUL A

NOTE

We already have seen how to find a basis for Nul A: row reduce A
to obtain a matrix in reduced row echelon form and use this to
express the null space in vector parametric form. The vectors
appearing will be the basis for Nul A.

EXAMPLE
Let

O O O
O O O W
O O = O
o O 1N
o = O O
\

Find a basis for Nul B.
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BASES FOR COL(A)

EXAMPLE

Again, let

O O o
O O O W
O O = O
o O o1 N
o = O O

Find a basis for Col B.
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BASES FOR COL(A)

EXAMPLE

Again, let

O O o
O O O W
O O = O
o O o1 N
o = O O

Find a basis for Col B.

| A

Fact

If A~ B, then the linear dependencies of the columns of A are
exactly the same as the linear dependencies of the columns of B.

v
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BASES FOR COL(A)

EXAMPLE

Again, let

O O o
O O O W
O O = O
o O o1 N
o = O O

Find a basis for Col B.

Fact

If A ~ B, then the linear dependencies of the columns of A are
exactly the same as the linear dependencies of the columns of B.

v

As a result, we have

The pivot columns of a matrix A form a basis for Col A.
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A basis is

e A spanning set which is as small as possible

e A linearly independent set which is as big as possible
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A basis is

e A spanning set which is as small as possible

e A linearly independent set which is as big as possible

EXAMPLE

Which of the following sets of vectors form a basis for R3.

o

1

oo+, OO OO

2

H WON PFWDND P W

—H OO — OO
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