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Theorem (Unique Representation Theorem)

Let V be a vector space, and let B = {~b1, ~b2, . . . , ~bn} be a basis
for V . Then for every ~v ∈ V , there is a unique vector

~x =

 x1
...

xn

 ∈ Rn so that

~v = x1~b1 + x2~b2 + · · ·+ xn~bn.
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Proof.

Since B is a basis, we know that there is at least one
representation of the form.

~v = x1~b1 + x2~b2 + · · ·+ xn~bn.

Now, suppose that we also have

~v = y1~b1 + y2~b2 + · · ·+ yn~bn.

Subtracting the two expressions for ~v , we obtain

~0 = (x1 − y1)~b1 + (x2 − y2)~b2 + · · ·+ (xn − yn)~bn.

Since B is linearly independent, the weights
(x1 − y1), (x2 − y2), . . . , (xn − yn) must be 0.
Hence xi = yi for 1 ≤ i ≤ n and the two representations are in fact
the same.
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Notation

Suppose B and V are as above. Given a vector v ∈ V we can write

v =
n∑

i=1

xi~bi = x1~b1 + x2~b2 + · · ·+ xn~bn.

We define the coordinate vector of v with respect to the basis B as

[v ]B =


x1
x2

...
xn

 .

Kevin James MTHSC 3110 Section 4.4 – Coordinate Systems



Example

Suppose that ~b1 =

(
1
0

)
and ~b2 =

(
1
1

)
. Then B = {~b1, ~b2} is

a basis for R2. Suppose that ~x has a coordinate representation
with respect to this basis

[~x ]B =

(
5
−7

)
.

Then x =

Suppose ~x =

(
2
7

)
.

Then [~x ]B =
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Coordinates in Rn

Suppose that B = {~b1, . . . , ~bp} is a basis for Rn.

Let PB = [~b1, . . . , ~bp].
Given ~v ∈ Rn, we can write (uniquely)

~v = w1
~b1 + · · ·+ wp

~bp = PB


w1

w2
...
wp

 .

That is PB~x = ~v has a unique solution for each ~v ∈ Rn.
Thus when we row reduce PB we must have a pivot in each row
(existence of solutions) and a pivot in each column (uniqueness).
Thus PB must be n × n (-i.e. p = n) and invertible.
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Coordinates in Rn continued ...

Suppose that B = {~b1, . . . , ~bn} is a basis for Rn and let
PB = [~b1, . . . , ~bn].
Then the vector equation

~v = x1~b1 + x2~b2 + · · ·+ xp~bn.

corresponds to the matrix equation

~v = PB~x .

But the weights x1, x2, . . . , xn in ~x are precisely the coordinates of
~v with respect to the basis B. Hence

~v = PB[~v ]B and [~v ]B = P−1B ~v .

Definition

PB is called the change of coordinates matrix.
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Theorem

Let B = {b1, . . . , bn} be a basis for a vector space V . Let
T : V → Rn be defined by

T (v) = [v ]B.

Then T is a one-to-one linear transformation onto Rn.

Note

We have assumed that the number of vectors in the basis is equal
to n, the dimension of Rn.
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Proof.

It is a linear transformation:

It is one-to-one

It is onto

Definition

If V has basis B = {b1, . . . , bn} as above, then we say that V is
isomorphic to Rn (isomorphic meaning “same shape” or “same
form”), which we write as V ∼= Rn.
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Corollary

For any vectors v , v1, . . . , vk ∈ V ,

[v ]B = ~0 ⇐⇒ v = 0

and

[c1v1 + c2v2 + · · ·+ ckvk ]B = c1[v1]B + c2[v2]B + · · ·+ ck [vk ]B.

Example

P3 has basis B = {1, x , x2, x3}. If

p(x) = ax3 + bx2 + cx + d ∈ P3

then

[p(x)]B =

  .

P3
∼= .
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Example

B′ = {1, x , x2 − x , x3 − 3x2 + 2x} is also a basis for P3. For the
same p(x) above, compute [p(x)]B′ .

Example

Consider the set S ⊂ P3.

S =

{
p(x) = 1 + x + x3, q(x) = 2 + x2,
r(x) = 4 + 2x + x2 + 2x3, s(x) = 1 + x + x2 + x3

}
.

Is S linearly dependent or linearly independent?

Example

Let ~v1 =

 3
6
2

 , ~v2 =

 −1
0
1

 , ~x =

 3
12

7

 Then {~v1, ~v2} is a

basis for H = span(~v1, ~v2). Is ~x ∈ H and if so, what is [~x ]B?
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