MTHSC 3110 Section 4.4 – Coordinate Systems

Kevin James

THEOREM (UNIQUE REPRESENTATION THEOREM)

Let V be a vector space, and let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ be a basis for V. Then for every $\vec{v} \in V$, there is a unique vector

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \text{ so that }$$

$$\vec{v} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_n \vec{b}_n.$$

PROOF.

Since $\ensuremath{\mathcal{B}}$ is a basis, we know that there is at least one representation of the form.

$$\vec{v} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_n \vec{b}_n.$$

Since \mathcal{B} is a basis, we know that there is at least one representation of the form.

$$\vec{v} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_n \vec{b}_n.$$

Now, suppose that we also have

$$\vec{v} = y_1 \vec{b}_1 + y_2 \vec{b}_2 + \dots + y_n \vec{b}_n.$$

Since \mathcal{B} is a basis, we know that there is at least one representation of the form.

$$\vec{v} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_n \vec{b}_n.$$

Now, suppose that we also have

$$\vec{v} = y_1 \vec{b}_1 + y_2 \vec{b}_2 + \dots + y_n \vec{b}_n.$$

Subtracting the two expressions for \vec{v} , we obtain

$$\vec{0} = (x_1 - y_1)\vec{b}_1 + (x_2 - y_2)\vec{b}_2 + \cdots + (x_n - y_n)\vec{b}_n.$$

Since \mathcal{B} is a basis, we know that there is at least one representation of the form.

$$\vec{v} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_n \vec{b}_n.$$

Now, suppose that we also have

$$\vec{v} = y_1 \vec{b}_1 + y_2 \vec{b}_2 + \dots + y_n \vec{b}_n.$$

Subtracting the two expressions for \vec{v} , we obtain

$$\vec{0} = (x_1 - y_1)\vec{b}_1 + (x_2 - y_2)\vec{b}_2 + \cdots + (x_n - y_n)\vec{b}_n.$$

Since \mathcal{B} is linearly independent, the weights $(x_1 - y_1), (x_2 - y_2), \dots, (x_n - y_n)$ must be 0.

Since \mathcal{B} is a basis, we know that there is at least one representation of the form.

$$\vec{v} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_n \vec{b}_n.$$

Now, suppose that we also have

$$\vec{v} = y_1 \vec{b}_1 + y_2 \vec{b}_2 + \dots + y_n \vec{b}_n.$$

Subtracting the two expressions for \vec{v} , we obtain

$$\vec{0} = (x_1 - y_1)\vec{b}_1 + (x_2 - y_2)\vec{b}_2 + \cdots + (x_n - y_n)\vec{b}_n.$$

Since \mathcal{B} is linearly independent, the weights $(x_1 - y_1), (x_2 - y_2), \dots, (x_n - y_n)$ must be 0.

Hence $x_i = y_i$ for $1 \le i \le n$ and the two representations are in fact the same.

NOTATION

Suppose \mathcal{B} and V are as above. Given a vector $v \in V$ we can write

$$v = \sum_{i=1}^{n} x_i \vec{b}_i = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_n \vec{b}_n.$$

We define the coordinate vector of v with respect to the basis \mathcal{B} as

$$[v]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Suppose that $\vec{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\vec{b}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Then $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ is a basis for \mathbb{R}^2 . Suppose that \vec{x} has a coordinate representation with respect to this basis

$$[\vec{x}]_{\mathcal{B}} = \begin{pmatrix} 5 \\ -7 \end{pmatrix}.$$

Then x =

Suppose that $\vec{b}_1=\left(\begin{array}{c}1\\0\end{array}\right)$ and $\vec{b}_2=\left(\begin{array}{c}1\\1\end{array}\right)$. Then $\mathcal{B}=\{\vec{b}_1,\vec{b}_2\}$ is a basis for \mathbb{R}^2 . Suppose that \vec{x} has a coordinate representation with respect to this basis

$$[\vec{x}]_{\mathcal{B}} = \begin{pmatrix} 5 \\ -7 \end{pmatrix}.$$

Then x =

Suppose
$$\vec{x} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$$
.
Then $[\vec{y}]_{R} = 0$

Suppose that $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$ is a basis for \mathbb{R}^n .

Suppose that $\mathcal{B}=\{\vec{b}_1,\ldots,\vec{b}_p\}$ is a basis for \mathbb{R}^n . Let $P_{\mathcal{B}}=[\vec{b}_1,\ldots,\vec{b}_p]$.

Suppose that $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$ is a basis for \mathbb{R}^n .

Let $P_{\mathcal{B}} = [\vec{b}_1, \dots, \vec{b}_p]$.

Given $\vec{v} \in \mathbb{R}^n$, we can write (uniquely)

$$\vec{v} = w_1 \vec{b_1} + \dots + w_p \vec{b_p} = P_{\mathcal{B}} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{pmatrix}.$$

Suppose that $\mathcal{B} = \{ \vec{b}_1, \dots, \vec{b}_p \}$ is a basis for \mathbb{R}^n .

Let $P_{\mathcal{B}} = [\vec{b}_1, \dots, \vec{b}_p].$

Given $\vec{v} \in \mathbb{R}^n$, we can write (uniquely)

$$\vec{v} = w_1 \vec{b_1} + \dots + w_p \vec{b_p} = P_{\mathcal{B}} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{pmatrix}.$$

That is $P_{\mathcal{B}}\vec{x} = \vec{v}$ has a unique solution for each $\vec{v} \in \mathbb{R}^n$.

Suppose that $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$ is a basis for \mathbb{R}^n .

Let $P_{\mathcal{B}} = [\vec{b}_1, \dots, \vec{b}_p]$.

Given $\vec{v} \in \mathbb{R}^n$, we can write (uniquely)

$$\vec{v} = w_1 \vec{b_1} + \dots + w_p \vec{b_p} = P_{\mathcal{B}} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{pmatrix}.$$

That is $P_{\mathcal{B}}\vec{x} = \vec{v}$ has a unique solution for each $\vec{v} \in \mathbb{R}^n$.

Thus when we row reduce $P_{\mathcal{B}}$ we must have a pivot in each row (existence of solutions) and a pivot in each column (uniqueness).

Suppose that $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$ is a basis for \mathbb{R}^n .

Let $P_{\mathcal{B}} = [\vec{b}_1, \dots, \vec{b}_p]$.

Given $\vec{v} \in \mathbb{R}^n$, we can write (uniquely)

$$\vec{v} = w_1 \vec{b_1} + \dots + w_p \vec{b_p} = P_{\mathcal{B}} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{pmatrix}.$$

That is $P_{\mathcal{B}}\vec{x} = \vec{v}$ has a unique solution for each $\vec{v} \in \mathbb{R}^n$.

Thus when we row reduce $P_{\mathcal{B}}$ we must have a pivot in each row (existence of solutions) and a pivot in each column (uniqueness).

Thus P_B must be $n \times n$ (-i.e. p = n) and invertible.

Coordinates in \mathbb{R}^n continued ...

Suppose that $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ is a basis for \mathbb{R}^n and let $P_{\mathcal{B}} = [\vec{b}_1, \dots, \vec{b}_n]$.

Then the vector equation

$$\vec{v} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_p \vec{b}_n.$$

corresponds to the matrix equation

$$\vec{v} = P_{\mathcal{B}}\vec{x}$$
.

COORDINATES IN \mathbb{R}^n CONTINUED ...

Suppose that $\mathcal{B}=\{\vec{b}_1,\ldots,\vec{b}_n\}$ is a basis for \mathbb{R}^n and let $P_{\mathcal{B}}=[\vec{b}_1,\ldots,\vec{b}_n]$.

Then the vector equation

$$\vec{v} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_p \vec{b}_n.$$

corresponds to the matrix equation

$$\vec{v} = P_{\mathcal{B}}\vec{x}$$
.

But the weights x_1, x_2, \ldots, x_n in \vec{x} are precisely the coordinates of \vec{v} with respect to the basis \mathcal{B} . Hence

$$\vec{v} = P_{\mathcal{B}}[\vec{v}]_{\mathcal{B}}$$
 and $[\vec{v}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\vec{v}$.

COORDINATES IN \mathbb{R}^n CONTINUED ...

Suppose that $\mathcal{B}=\{\vec{b}_1,\ldots,\vec{b}_n\}$ is a basis for \mathbb{R}^n and let $P_{\mathcal{B}}=[\vec{b}_1,\ldots,\vec{b}_n]$.

Then the vector equation

$$\vec{v} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_p \vec{b}_n.$$

corresponds to the matrix equation

$$\vec{v} = P_{\mathcal{B}}\vec{x}$$
.

But the weights x_1, x_2, \ldots, x_n in \vec{x} are precisely the coordinates of \vec{v} with respect to the basis \mathcal{B} . Hence

$$\vec{v} = P_{\mathcal{B}}[\vec{v}]_{\mathcal{B}}$$
 and $[\vec{v}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\vec{v}$.

Definition

 $P_{\mathcal{B}}$ is called the *change of coordinates* matrix.

THEOREM

Let $\mathcal{B} = \{b_1, \dots, b_n\}$ be a basis for a vector space V. Let $T: V \to \mathbb{R}^n$ be defined by

$$T(v) = [v]_{\mathcal{B}}.$$

Then T is a one-to-one linear transformation onto \mathbb{R}^n .

THEOREM

Let $\mathcal{B} = \{b_1, \dots, b_n\}$ be a basis for a vector space V. Let $T: V \to \mathbb{R}^n$ be defined by

$$T(v) = [v]_{\mathcal{B}}.$$

Then T is a one-to-one linear transformation onto \mathbb{R}^n .

Note

We have assumed that the number of vectors in the basis is equal to n, the dimension of \mathbb{R}^n .

PROOF. It is a linear transformation: It is one-to-one

It is onto

It is a linear transformation:

It is one-to-one

It is onto

DEFINITION

If V has basis $\mathcal{B} = \{b_1, \dots, b_n\}$ as above, then we say that V is isomorphic to \mathbb{R}^n (isomorphic meaning "same shape" or "same form"), which we write as $V \cong \mathbb{R}^n$.

COROLLARY

For any vectors $v, v_1, \ldots, v_k \in V$,

$$[v]_{\mathcal{B}} = \vec{0} \qquad \iff \qquad v = 0$$

and

$$[c_1v_1 + c_2v_2 + \cdots + c_kv_k]_{\mathcal{B}} = c_1[v_1]_{\mathcal{B}} + c_2[v_2]_{\mathcal{B}} + \cdots + c_k[v_k]_{\mathcal{B}}.$$

COROLLARY

For any vectors $v, v_1, \ldots, v_k \in V$,

$$[v]_{\mathcal{B}} = \vec{0} \qquad \iff \qquad v = 0$$

and

$$[c_1v_1 + c_2v_2 + \cdots + c_kv_k]_{\mathcal{B}} = c_1[v_1]_{\mathcal{B}} + c_2[v_2]_{\mathcal{B}} + \cdots + c_k[v_k]_{\mathcal{B}}.$$

EXAMPLE

 \mathbb{P}_3 has basis $\mathcal{B}=\{1,x,x^2,x^3\}.$ If

$$p(x) = ax^3 + bx^2 + cx + d \in \mathbb{P}_3$$

then

$$[p(x)]_{\mathcal{B}} = \left(\right).$$

$$\mathbb{P}_3 \cong$$
_____.

 $\mathcal{B}' = \{1, x, x^2 - x, x^3 - 3x^2 + 2x\}$ is also a basis for \mathbb{P}_3 . For the same p(x) above, compute $[p(x)]_{\mathcal{B}'}$.

 $\mathcal{B}'=\{1,x,x^2-x,x^3-3x^2+2x\}$ is also a basis for \mathbb{P}_3 . For the same p(x) above, compute $[p(x)]_{\mathcal{B}'}$.

EXAMPLE

Consider the set $S \subset \mathbb{P}_3$.

$$S = \left\{ \begin{aligned} p(x) &= 1 + x + x^3, q(x) = 2 + x^2, \\ r(x) &= 4 + 2x + x^2 + 2x^3, s(x) = 1 + x + x^2 + x^3 \end{aligned} \right\}.$$

Is S linearly dependent or linearly independent?

 $\mathcal{B}'=\{1,x,x^2-x,x^3-3x^2+2x\}$ is also a basis for \mathbb{P}_3 . For the same p(x) above, compute $[p(x)]_{\mathcal{B}'}$.

EXAMPLE

Consider the set $S \subset \mathbb{P}_3$.

$$S = \left\{ \begin{aligned} p(x) &= 1 + x + x^3, q(x) = 2 + x^2, \\ r(x) &= 4 + 2x + x^2 + 2x^3, s(x) = 1 + x + x^2 + x^3 \end{aligned} \right\}.$$

Is S linearly dependent or linearly independent?

EXAMPLE

Let
$$\vec{v}_1 = \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{x} = \begin{pmatrix} 3 \\ 12 \\ 7 \end{pmatrix}$ Then $\{\vec{v}_1, \vec{v}_2\}$ is a basis for $H = \operatorname{span}(\vec{v}_1, \vec{v}_2)$. Is $\vec{x} \in H$ and if so, what is $[\vec{x}]_{\mathcal{B}}$?