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Note

Suppose that A is an m × n matrix. We can view A as a collection
of rows instead of a collection of columns.

Note

The set of length n row vectors with real entries is a vector space.

Definition

We define Row(A) to be the span of the rows of A.
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Theorem

If A ∼ B, then Row(A)=Row(B). If B is in echelon form, then the
non-zero rows of B are a basis for Row(B)= Row(A).

Sketch of Proof.

Suppose that A ∼ B.
Then the rows of B are linear combinations of the rows of A and
vice versa.
Thus Row(A) = Row(B).
It is fairly easy to see that the nonzero rows of a matrix in echelon
form are linearly independent and span the row space of that
matrix.

Corollary

dim(Row(A)) = # of pivots = dim(Col(A)).
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Example

Let

A =


−2 −5 8 0 −17

1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3

→


1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0



→


1 0 1 0 1
0 1 −2 0 3
0 0 0 1 −5
0 0 0 0 0

 .

Find Row(A), Col(A), and Nul(A).
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Theorem (The Rank-Nullity Theorem)

Let A be an m × n matrix. Then

dim(Row(A)) = dim(Col(A)).

We call this value rank(A) and further, we have

rank(A) + dim(Nul(A)) = n.

Proof.

We have seen that dim(Row(A)) = dim(Col(A)) = #pivots.
We will call this common value rank(A).
Recall that dim(Nul(A)) = # free variables = n −# pivots..
Thus

dim(Nul(A)) + rank(A) = (n −# pivots) + #pivots = n.
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Theorem

Let A be an n × n matrix. The following (extra) conditions are
equivalent to A being invertible:

(m) The columns of A are a basis for Rn.

(n) Col(A)=Rn.

(o) dim(Col(A)) = n.

(p) rank(A)=n.

(q) Nul(A)={~0}.
(r) dim(Nul(A)) = 0.
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