MTHSC 3110 Section 4.6 – The Rank of a Matrix

Kevin James

Kevin James MTHSC 3110 Section 4.6 – The Rank of a Matrix

< ∃⇒

Note

Suppose that A is an $m \times n$ matrix. We can view A as a collection of *rows* instead of a collection of columns.

★ 문 ► ★ 문 ►

Note

Suppose that A is an $m \times n$ matrix. We can view A as a collection of *rows* instead of a collection of columns.

Note

The set of length n row vectors with real entries is a vector space.

→ E → < E →</p>

Note

Suppose that A is an $m \times n$ matrix. We can view A as a collection of *rows* instead of a collection of columns.

Note

The set of length n row vectors with real entries is a vector space.

DEFINITION

We define Row(A) to be the span of the rows of A.

If $A \sim B$, then Row(A) = Row(B). If B is in echelon form, then the non-zero rows of B are a basis for Row(B) = Row(A).

(1日) (1日) (日) (日)

크

If $A \sim B$, then Row(A) = Row(B). If B is in echelon form, then the non-zero rows of B are a basis for Row(B) = Row(A).

Sketch of Proof.

Suppose that $A \sim B$.

イロト イポト イヨト イヨト

If $A \sim B$, then Row(A) = Row(B). If B is in echelon form, then the non-zero rows of B are a basis for Row(B) = Row(A).

Sketch of Proof.

Suppose that $A \sim B$. Then the rows of B are linear combinations of the rows of A

If $A \sim B$, then Row(A) = Row(B). If B is in echelon form, then the non-zero rows of B are a basis for Row(B) = Row(A).

Sketch of Proof.

Suppose that $A \sim B$.

Then the rows of B are linear combinations of the rows of A and vice versa.

If $A \sim B$, then Row(A) = Row(B). If B is in echelon form, then the non-zero rows of B are a basis for Row(B) = Row(A).

SKETCH OF PROOF.

Suppose that $A \sim B$. Then the rows of B are linear combinations of the rows of A and vice versa. Thus Row(A) = Row(B).

If $A \sim B$, then Row(A) = Row(B). If B is in echelon form, then the non-zero rows of B are a basis for Row(B) = Row(A).

Sketch of Proof.

Suppose that $A \sim B$.

Then the rows of B are linear combinations of the rows of A and vice versa.

Thus Row(A) = Row(B).

It is fairly easy to see that the nonzero rows of a matrix in echelon form are linearly independent and span the row space of that matrix.

If $A \sim B$, then Row(A) = Row(B). If B is in echelon form, then the non-zero rows of B are a basis for Row(B) = Row(A).

Sketch of Proof.

Suppose that $A \sim B$.

Then the rows of B are linear combinations of the rows of A and vice versa.

Thus Row(A) = Row(B).

It is fairly easy to see that the nonzero rows of a matrix in echelon form are linearly independent and span the row space of that matrix.

COROLLARY

 $\dim(Row(A)) = \# of pivots =$

A (1) × A (2) × A (2)

If $A \sim B$, then Row(A) = Row(B). If B is in echelon form, then the non-zero rows of B are a basis for Row(B) = Row(A).

Sketch of Proof.

Suppose that $A \sim B$.

Then the rows of B are linear combinations of the rows of A and vice versa.

Thus Row(A) = Row(B).

It is fairly easy to see that the nonzero rows of a matrix in echelon form are linearly independent and span the row space of that matrix.

COROLLARY

$$\dim(Row(A)) = \# of pivots = \dim(Col(A)).$$

A (10) × (10) × (10)

EXAMPLE

Let

$$A = \begin{pmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -5 & 1 & 5 \\ 0 & 1 & -2 & 2 & -7 \\ 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & -4 & 20 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
Find Row(A), Col(A), and Nul(A).

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Let A be an $m \times n$ matrix. Then

 $\dim(Row(A)) = \dim(Col(A)).$

We call this value rank(A) and further, we have

rank(A) + dim(Nul(A)) = n.

Let A be an $m \times n$ matrix. Then

 $\dim(Row(A)) = \dim(Col(A)).$

We call this value rank(A) and further, we have

rank(A) + dim(Nul(A)) = n.

Proof.

We have seen that $\dim(Row(A)) = \dim(Col(A)) = \#pivots$.

Let A be an $m \times n$ matrix. Then

 $\dim(Row(A)) = \dim(Col(A)).$

We call this value rank(A) and further, we have

rank(A) + dim(Nul(A)) = n.

Proof.

We have seen that $\dim(Row(A)) = \dim(Col(A)) = \#pivots$. We will call this common value rank(A).

Let A be an $m \times n$ matrix. Then

 $\dim(Row(A)) = \dim(Col(A)).$

We call this value rank(A) and further, we have

rank(A) + dim(Nul(A)) = n.

Proof.

We have seen that $\dim(\operatorname{Row}(A)) = \dim(\operatorname{Col}(A)) = \#$ pivots. We will call this common value $\operatorname{rank}(A)$. Recall that $\dim(\operatorname{Nul}(A)) = \#$ free variables = n - # pivots..

Let A be an $m \times n$ matrix. Then

 $\dim(Row(A)) = \dim(Col(A)).$

We call this value rank(A) and further, we have

rank(A) + dim(Nul(A)) = n.

Proof.

We have seen that $\dim(\operatorname{Row}(A)) = \dim(\operatorname{Col}(A)) = \#$ pivots. We will call this common value $\operatorname{rank}(A)$. Recall that $\dim(\operatorname{Nul}(A)) = \#$ free variables = n - # pivots.. Thus

$$\dim(\operatorname{Nul}(A)) + \operatorname{rank}(A) = (n - \# \operatorname{pivots}) + \# \operatorname{pivots} = n.$$

Let A be an $n \times n$ matrix. The following (extra) conditions are equivalent to A being invertible:

- (M) The columns of A are a basis for \mathbb{R}^n .
- (N) $Col(A) = \mathbb{R}^n$.
- (0) $\dim(Col(A)) = n$.
- (P) rank(A)=n.
- (Q) $Nul(A) = \{\vec{0}\}.$
- (R) $\dim(Nul(A)) = 0.$

向下 イヨト イヨト

3