MTHSC 3110 Section 4.7 – Change of Basis

Kevin James

EXAMPLE

Suppose that we have two bases $\mathcal{B}=\{\underline{b}_1,\underline{b}_2\}$ and $\mathcal{C}=\{\underline{c}_1,\underline{c}_2\}$ for a 2-dimensional vector space V. Since \mathcal{C} is a basis, we can express \mathcal{B} in terms of \mathcal{C} . Suppose that we know

$$\underline{b}_1 = 4\underline{c}_1 + 3\underline{c}_2$$
 and $\underline{b}_2 = 2\underline{c}_1 + \underline{c}_2$.

Suppose
$$[\underline{x}]_{\mathcal{B}} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
. Find $[x]_{\mathcal{C}}$.

THEOREM

Let $\mathcal{B} = \{\underline{b}_1, \dots, \underline{b}_n\}$ and $\mathcal{C} = \{\underline{c}_1, \dots, \underline{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ so that

$$[\underline{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \ [\underline{x}]_{\mathcal{B}}.$$

The columns of $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = [\ [\underline{b}_1]_{\mathcal{C}} \ [\underline{b}_2]_{\mathcal{C}} \ \dots \ [\underline{b}_n]_{\mathcal{C}}\].$$

THEOREM

Let $\mathcal{B} = \{\underline{b}_1, \dots, \underline{b}_n\}$ and $\mathcal{C} = \{\underline{c}_1, \dots, \underline{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ so that

$$[\underline{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \ [\underline{x}]_{\mathcal{B}}.$$

The columns of $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = [\ [\underline{b}_1]_{\mathcal{C}} \ [\underline{b}_2]_{\mathcal{C}} \ \dots \ [\underline{b}_n]_{\mathcal{C}}\].$$

Proof.

Example

Let

$$\underline{b}_1 = \begin{pmatrix} -9 \\ 1 \end{pmatrix} , \qquad \underline{b}_2 = \begin{pmatrix} -5 \\ -1 \end{pmatrix},$$

$$\underline{c}_1 = \begin{pmatrix} 1 \\ -4 \end{pmatrix} , \qquad \underline{c}_2 = \begin{pmatrix} 3 \\ -5 \end{pmatrix}.$$

Let $\mathcal{B} = \{\underline{b}_1, \underline{b}_2\}$ and let $\mathcal{C} = \{\underline{c}_1, \underline{c}_2\}$ be bases for \mathbb{R}^2 . Find the change of coordinates matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from \mathcal{B} to \mathcal{C} .

By Theorem 15, $P_{\mathcal{C}\leftarrow\mathcal{B}}=[[\underline{b}_1]_{\mathcal{C}},[\underline{b}_2]_{\mathcal{C}}].$

By Theorem 15, $P_{\mathcal{C} \leftarrow \mathcal{B}} = [[\underline{b}_1]_{\mathcal{C}}, [\underline{b}_2]_{\mathcal{C}}].$ So ,we need to find $[\underline{b}_1]_{\mathcal{C}}$ and $[\underline{b}_2]_{\mathcal{C}}.$

By Theorem 15, $P_{\mathcal{C} \leftarrow \mathcal{B}} = [[\underline{b}_1]_{\mathcal{C}}, [\underline{b}_2]_{\mathcal{C}}].$ So ,we need to find $[\underline{b}_1]_{\mathcal{C}}$ and $[\underline{b}_2]_{\mathcal{C}}.$

$$\underline{b}_1 = p_{11}\underline{c}_1 + p_{21}\underline{c}_2 =$$

By Theorem 15, $P_{\mathcal{C}\leftarrow\mathcal{B}} = [[\underline{b}_1]_{\mathcal{C}}, [\underline{b}_2]_{\mathcal{C}}].$

So ,we need to find $[\underline{b}_1]_{\mathcal{C}}$ and $[\underline{b}_2]_{\mathcal{C}}$.

$$\underline{b}_1 = p_{11}\underline{c}_1 + p_{21}\underline{c}_2 = [\underline{c}_1, \underline{c}_2] \begin{pmatrix} p_{11} \\ p_{21} \end{pmatrix}$$

By Theorem 15, $P_{\mathcal{C}\leftarrow\mathcal{B}} = [[\underline{b}_1]_{\mathcal{C}}, [\underline{b}_2]_{\mathcal{C}}].$

So ,we need to find $[\underline{b}_1]_{\mathcal{C}}$ and $[\underline{b}_2]_{\mathcal{C}}$.

$$\underline{b}_1 = p_{11}\underline{c}_1 + p_{21}\underline{c}_2 = [\underline{c}_1, \underline{c}_2] \begin{pmatrix} p_{11} \\ p_{21} \end{pmatrix}$$

$$\underline{b}_2 = p_{12}\underline{c}_1 + p_{22}\underline{c}_2 =$$

By Theorem 15, $P_{\mathcal{C}\leftarrow\mathcal{B}} = [[\underline{b}_1]_{\mathcal{C}}, [\underline{b}_2]_{\mathcal{C}}].$

So ,we need to find $[\underline{b}_1]_{\mathcal{C}}$ and $[\underline{b}_2]_{\mathcal{C}}$.

$$\underline{b}_1 = p_{11}\underline{c}_1 + p_{21}\underline{c}_2 = [\underline{c}_1, \underline{c}_2] \begin{pmatrix} p_{11} \\ p_{21} \end{pmatrix}$$

$$\underline{b}_2 = p_{12}\underline{c}_1 + p_{22}\underline{c}_2 = [\underline{c}_1, \underline{c}_2] \begin{pmatrix} p_{12} \\ p_{22} \end{pmatrix}$$

By Theorem 15, $P_{\mathcal{C}\leftarrow\mathcal{B}} = [[\underline{b}_1]_{\mathcal{C}}, [\underline{b}_2]_{\mathcal{C}}].$

So ,we need to find $[\underline{b}_1]_{\mathcal{C}}$ and $[\underline{b}_2]_{\mathcal{C}}$.

That is, we need to solve the vector equations:

$$\underline{b}_1 = p_{11}\underline{c}_1 + p_{21}\underline{c}_2 = [\underline{c}_1, \underline{c}_2] \begin{pmatrix} p_{11} \\ p_{21} \end{pmatrix}$$

$$\underline{b}_2 = p_{12}\underline{c}_1 + p_{22}\underline{c}_2 = [\underline{c}_1, \underline{c}_2] \begin{pmatrix} p_{12} \\ p_{22} \end{pmatrix}$$

We will solve these simultaneously,

By Theorem 15, $P_{\mathcal{C}\leftarrow\mathcal{B}} = [[\underline{b}_1]_{\mathcal{C}}, [\underline{b}_2]_{\mathcal{C}}].$

So ,we need to find $[\underline{b}_1]_{\mathcal{C}}$ and $[\underline{b}_2]_{\mathcal{C}}$.

That is, we need to solve the vector equations:

$$\underline{b}_1 = p_{11}\underline{c}_1 + p_{21}\underline{c}_2 = [\underline{c}_1, \underline{c}_2] \begin{pmatrix} p_{11} \\ p_{21} \end{pmatrix}$$

$$\underline{b}_2 = p_{12}\underline{c}_1 + p_{22}\underline{c}_2 = [\underline{c}_1, \underline{c}_2] \begin{pmatrix} p_{12} \\ p_{22} \end{pmatrix}$$

We will solve these simultaneously,

$$\begin{pmatrix} 1 & 3 & -9 & -5 \\ -4 & -5 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -9 & -5 \\ 0 & 7 & -35 & -21 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -9 & -5 \\ 0 & 1 & -5 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -9 & -5 \\ 0 & 1 & -5 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{pmatrix}$$

SOLUTION CONTINUED ...

So
$$P_{\mathcal{C}\leftarrow\mathcal{B}}=\left(\begin{array}{cc} 6 & 4 \\ -5 & -3 \end{array}\right)$$
.

SOLUTION CONTINUED ...

So
$$P_{\mathcal{C}\leftarrow\mathcal{B}}=\left(\begin{array}{cc} 6 & 4 \\ -5 & -3 \end{array}\right)$$
.

Note

$$[c_1, c_2|b_1, b_2] \to [I|P_{C \leftarrow B}].$$

Working in \mathbb{R}^n

RECALL

Suppose that $\mathcal{B} = \{b_1, \dots, b_n\}$ and $\mathcal{C} = \{c_1, \dots, c_n\}$ bases for \mathbb{R}^n and that $\vec{x} \in \mathbb{R}^n$.

Suppose that $\mathcal{B} = \{b_1, \dots, b_n\}$ and $\mathcal{C} = \{c_1, \dots, c_n\}$ bases for \mathbb{R}^n and that $\vec{x} \in \mathbb{R}^n$.

Then we can write

$$P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} = \vec{x} \qquad (P_{\mathcal{B}} = [b_1, \dots b_n]),$$

 $P_{\mathcal{C}}[\vec{x}]_{\mathcal{C}} = \vec{x} \qquad (P_{\mathcal{C}} = [c_1, \dots c_n]).$

$$[\vec{x}]_{\mathcal{C}} =$$

Suppose that $\mathcal{B} = \{b_1, \dots, b_n\}$ and $\mathcal{C} = \{c_1, \dots, c_n\}$ bases for \mathbb{R}^n and that $\vec{x} \in \mathbb{R}^n$.

Then we can write

$$P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} = \vec{x} \qquad (P_{\mathcal{B}} = [b_1, \dots b_n]),$$

 $P_{\mathcal{C}}[\vec{x}]_{\mathcal{C}} = \vec{x} \qquad (P_{\mathcal{C}} = [c_1, \dots c_n]).$

$$[\vec{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1} \vec{x} =$$

Suppose that $\mathcal{B} = \{b_1, \dots, b_n\}$ and $\mathcal{C} = \{c_1, \dots, c_n\}$ bases for \mathbb{R}^n and that $\vec{x} \in \mathbb{R}^n$.

Then we can write

$$P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} = \vec{x} \qquad (P_{\mathcal{B}} = [b_1, \dots b_n]),$$

 $P_{\mathcal{C}}[\vec{x}]_{\mathcal{C}} = \vec{x} \qquad (P_{\mathcal{C}} = [c_1, \dots c_n]).$

$$[\vec{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\vec{x} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}.$$

Suppose that $\mathcal{B} = \{b_1, \dots, b_n\}$ and $\mathcal{C} = \{c_1, \dots, c_n\}$ bases for \mathbb{R}^n and that $\vec{x} \in \mathbb{R}^n$.

Then we can write

$$P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} = \vec{x} \qquad (P_{\mathcal{B}} = [b_1, \dots b_n]),$$

 $P_{\mathcal{C}}[\vec{x}]_{\mathcal{C}} = \vec{x} \qquad (P_{\mathcal{C}} = [c_1, \dots c_n]).$

$$[\vec{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\vec{x} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}.$$

So,
$$P_{\mathcal{C}\leftarrow\mathcal{B}}=P_{\mathcal{C}}^{-1}P_{\mathcal{B}}$$
.

Suppose that $\mathcal{B} = \{b_1, \dots, b_n\}$ and $\mathcal{C} = \{c_1, \dots, c_n\}$ bases for \mathbb{R}^n and that $\vec{x} \in \mathbb{R}^n$.

Then we can write

$$P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} = \vec{x} \qquad (P_{\mathcal{B}} = [b_1, \dots b_n]),$$

 $P_{\mathcal{C}}[\vec{x}]_{\mathcal{C}} = \vec{x} \qquad (P_{\mathcal{C}} = [c_1, \dots c_n]).$

So,

$$[\vec{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\vec{x} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}.$$

So, $P_{\mathcal{C}\leftarrow\mathcal{B}}=P_{\mathcal{C}}^{-1}P_{\mathcal{B}}$.

Computational Note

 $P_{\mathcal{C}\leftarrow\mathcal{B}}$ can be computed more quickly as in the previous example.