MTHSC 3110 Section 5.1 – Eigenvalues and Eigenvectors

Kevin James

Kevin James MTHSC 3110 Section 5.1 – Eigenvalues and Eigenvectors

白 と く ヨ と く ヨ と …

臣

DEFINITION

Let A be an $n \times n$ matrix. A *non-zero* vector $\vec{x} \in \mathbb{R}^n$ is called an eigenvector of A if there exists some scalar $\lambda \in \mathbb{R}$ so that $A\vec{x} = \lambda \vec{x}$. If \vec{x} is an eigenvector of A, the corresponding value λ is called an eigenvalue of A, and we say that λ is an eigenvalue of A with eigenvector \vec{x} .

Note

While an eigenvector \vec{x} must be non-zero (so that we are always excluding the trivial case $\vec{A0} = \vec{0}$), it is possible for the value λ to be zero.

EXAMPLE

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 has eigenvector $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$ with eigenvalue 0.

Note

If λ is an eigenvalue for A, the eigenvectors for A corresponding to λ along with $\vec{0}$ form a subspace of \mathbb{R}^n .

EXAMPLE

$$\left(\begin{array}{cc}1&6\\5&2\end{array}\right)\left(\begin{array}{c}6\\-5\end{array}\right)=\left(\begin{array}{c}-24\\20\end{array}\right)=-4\left(\begin{array}{c}6\\-5\end{array}\right)$$

Thus we see that $\begin{pmatrix} 6 \\ -5 \end{pmatrix}$ is an eigenvector of this matrix, and -4 is the corresponding eigenvalue.

通 ト イ ヨ ト イ ヨ ト

EXAMPLE

Show that 7 is an eigenvalue for

$$A = \left(\begin{array}{cc} 2 & 4 \\ 5 & 3 \end{array}\right).$$

Note

For any scalar λ ,

$$\begin{aligned} A\vec{x} &= \lambda \vec{x} \\ \Leftrightarrow & A\vec{x} - \lambda \vec{x} = \vec{0} \\ \Leftrightarrow & A\vec{x} - \lambda I \vec{x} = \vec{0} \\ \Leftrightarrow & (A - \lambda I) \vec{x} = \vec{0} \\ \Leftrightarrow & \vec{x} \in Nul(A - \lambda I) \end{aligned}$$

ヘロア 人間 アメヨア 人間 アー

Ð,

DEFINITION

If dim(Nul($A - \lambda I$)) > 0, then Nul($A - \lambda I$) is called the eigenspace for A corresponding to the eigenvalue λ , since any $\vec{x} \in \text{Nul}(A - \lambda I)$ satisfies $A\vec{x} = \lambda \vec{x}$.

EXAMPLE

Find a basis for the eigenspace corresponding to the eigenvector 2 for the matrix

$$A=\left(egin{array}{cccc} 4 & -1 & 6 \ 2 & 1 & 6 \ 2 & -1 & 8 \end{array}
ight)$$

・ 同 ト ・ 三 ト ・ 三 ト

Theorem

The eigenvalues of an upper triangular matrix (or of a lower triangular matrix) are its diagonal entries.

INVERTIBLE MATRIX THEOREM

The number 0 is an eigenvalue of A

$$\iff$$
 there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} = 0\vec{x}$

$$\iff$$
 there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} - 0\vec{x} = \vec{0}$.

$$\iff$$
 There exists $\vec{x} \neq \vec{0} \in \text{Nul}(A)$.

 \iff *A* is not invertible.

Theorem

If $\vec{v_1}, \ldots, \vec{v_r}$ are eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\vec{v_1}, \ldots, \vec{v_r}\}$ is linearly independent.

< A > < B >

EXAMPLE

In many applications, one is interested in studying repeated application of a linear map. Suppose we would like to study the long term behavior of a sequence $\{\vec{x}_k\}$ satisfying $\vec{x}_{k+1} = A\vec{x}_k$. Describe the long term behavior of such a sequence where \vec{x}_0 is an eigenvector of A with eigenvalue λ .

伺 ト イ ヨ ト イ ヨ ト