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Definition

Let A be an n × n matrix. A non-zero vector ~x ∈ Rn is called an
eigenvector of A if there exists some scalar λ ∈ R so that A~x = λ~x .

If ~x is an eigenvector of A, the corresponding value λ is called an
eigenvalue of A, and we say that λ is an eigenvalue of A with
eigenvector ~x .

Note

While an eigenvector ~x must be non-zero (so that we are always
excluding the trivial case A~0 = ~0), it is possible for the value λ to
be zero.

Example(
1 2
2 4

)
has eigenvector

(
2
−1

)
with eigenvalue 0.
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Note

If λ is an eigenvalue for A, the eigenvectors for A corresponding to
λ along with ~0 form a subspace of Rn.

Example(
1 6
5 2

)(
6
−5

)
=

(
−24

20

)
= −4

(
6
−5

)
.

Thus we see that

(
6
−5

)
is an eigenvector of this matrix, and −4

is the corresponding eigenvalue.
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Example

Show that 7 is an eigenvalue for

A =

(
2 4
5 3

)
.

Note

For any scalar λ,

A~x = λ~x

⇔ A~x − λ~x = ~0

⇔ A~x − λI~x = ~0

⇔ (A− λI ) ~x = ~0

⇔ ~x ∈ Nul(A− λI )
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Definition

If dim(Nul(A− λI )) > 0, then Nul(A− λI ) is called the
eigenspace for A corresponding to the eigenvalue λ, since any
~x ∈ Nul(A− λI ) satisfies A~x = λ~x .

Example

Find a basis for the eigenspace corresponding to the eigenvector 2
for the matrix

A =

 4 −1 6
2 1 6
2 −1 8

 .
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Theorem

The eigenvalues of an upper triangular matrix (or of a lower
triangular matrix) are its diagonal entries.

Invertible Matrix Theorem

The number 0 is an eigenvalue of A

⇐⇒ there exists ~x 6= ~0 so that A~x = 0~x

⇐⇒ there exists ~x 6= ~0 so that A~x − 0~x = ~0.

⇐⇒ There exists ~x 6= ~0 ∈ Nul(A).

⇐⇒ A is not invertible.

Theorem

If ~v1, . . . , ~vr are eigenvectors corresponding to distinct eigenvalues
λ1, . . . , λr of an n × n matrix A, then the set {~v1, . . . , ~vr} is
linearly independent.
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Example

In many applications, one is interested in studying repeated
application of a linear map.

Suppose we would like to study the long term behavior of a
sequence {~xk} satisfying ~xk+1 = A~xk .
Describe the long term behavior of such a sequence where ~x0 is an
eigenvector of A with eigenvalue λ.
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