MTHSC 3110 Section 5.1 – Eigenvalues and Eigenvectors

Kevin James

DEFINITION

Let A be an $n \times n$ matrix. A *non-zero* vector $\vec{x} \in \mathbb{R}^n$ is called an eigenvector of A if there exists some scalar $\lambda \in \mathbb{R}$ so that $A\vec{x} = \lambda \vec{x}$.

Definition

Let A be an $n \times n$ matrix. A *non-zero* vector $\vec{x} \in \mathbb{R}^n$ is called an eigenvector of A if there exists some scalar $\lambda \in \mathbb{R}$ so that $A\vec{x} = \lambda \vec{x}$. If \vec{x} is an eigenvector of A, the corresponding value λ is called an eigenvalue of A, and we say that λ is an eigenvalue of A with eigenvector \vec{x} .

DEFINITION

Let A be an $n \times n$ matrix. A non-zero vector $\vec{x} \in \mathbb{R}^n$ is called an eigenvector of A if there exists some scalar $\lambda \in \mathbb{R}$ so that $A\vec{x} = \lambda \vec{x}$. If \vec{x} is an eigenvector of A, the corresponding value λ is called an eigenvalue of A, and we say that λ is an eigenvalue of A with eigenvector \vec{x} .

Note

While an eigenvector \vec{x} must be non-zero (so that we are always excluding the trivial case $\vec{A0} = \vec{0}$), it is possible for the value λ to be zero.

DEFINITION

Let A be an $n \times n$ matrix. A non-zero vector $\vec{x} \in \mathbb{R}^n$ is called an eigenvector of A if there exists some scalar $\lambda \in \mathbb{R}$ so that $A\vec{x} = \lambda \vec{x}$. If \vec{x} is an eigenvector of A, the corresponding value λ is called an eigenvalue of A, and we say that λ is an eigenvalue of A with eigenvector \vec{x} .

Note

While an eigenvector \vec{x} must be non-zero (so that we are always excluding the trivial case $\vec{A0} = \vec{0}$), it is possible for the value λ to be zero.

EXAMPLE

$$\left(\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array} \right)$$
 has eigenvector $\left(\begin{array}{cc} 2 \\ -1 \end{array} \right)$ with eigenvalue 0.

Note

If λ is an eigenvalue for A, the eigenvectors for A corresponding to λ along with $\vec{0}$ form a subspace of \mathbb{R}^n .

Note

If λ is an eigenvalue for A, the eigenvectors for A corresponding to λ along with $\vec{0}$ form a subspace of \mathbb{R}^n .

EXAMPLE

$$\left(\begin{array}{cc} 1 & 6 \\ 5 & 2 \end{array}\right) \left(\begin{array}{c} 6 \\ -5 \end{array}\right) = \left(\begin{array}{c} -24 \\ 20 \end{array}\right) = -4 \left(\begin{array}{c} 6 \\ -5 \end{array}\right).$$

Note

If λ is an eigenvalue for A, the eigenvectors for A corresponding to λ along with $\vec{0}$ form a subspace of \mathbb{R}^n .

EXAMPLE

$$\left(\begin{array}{cc} 1 & 6 \\ 5 & 2 \end{array}\right) \left(\begin{array}{c} 6 \\ -5 \end{array}\right) = \left(\begin{array}{c} -24 \\ 20 \end{array}\right) = -4 \left(\begin{array}{c} 6 \\ -5 \end{array}\right).$$

Thus we see that $\begin{pmatrix} 6 \\ -5 \end{pmatrix}$ is an eigenvector of this matrix, and -4 is the corresponding eigenvalue.

Show that 7 is an eigenvalue for

$$A = \left(\begin{array}{cc} 2 & 4 \\ 5 & 3 \end{array}\right).$$

Show that 7 is an eigenvalue for

$$A = \left(\begin{array}{cc} 2 & 4 \\ 5 & 3 \end{array}\right).$$

Note

$$\begin{array}{rcl}
A\vec{x} & = & \lambda\vec{x} \\
\Leftrightarrow & \\
\end{array}$$

Show that 7 is an eigenvalue for

$$A = \left(\begin{array}{cc} 2 & 4 \\ 5 & 3 \end{array}\right).$$

Note

$$\begin{array}{rcl} A\vec{x} & = & \lambda\vec{x} \\ \Leftrightarrow & A\vec{x} - \lambda\vec{x} = \vec{0} \\ \Leftrightarrow & \end{array}$$

Show that 7 is an eigenvalue for

$$A = \left(\begin{array}{cc} 2 & 4 \\ 5 & 3 \end{array}\right).$$

Note

$$A\vec{x} = \lambda \vec{x}$$

$$\Leftrightarrow A\vec{x} - \lambda \vec{x} = \vec{0}$$

$$\Leftrightarrow A\vec{x} - \lambda I\vec{x} = \vec{0}$$

$$\Leftrightarrow$$

Show that 7 is an eigenvalue for

$$A = \left(\begin{array}{cc} 2 & 4 \\ 5 & 3 \end{array}\right).$$

Note

$$\begin{array}{rcl}
A\vec{x} & = & \lambda \vec{x} \\
\Leftrightarrow & A\vec{x} - \lambda \vec{x} = \vec{0} \\
\Leftrightarrow & A\vec{x} - \lambda I \vec{x} = \vec{0} \\
\Leftrightarrow & (A - \lambda I) \vec{x} = \vec{0} \\
\Leftrightarrow & (A - \lambda I) \vec{x} = \vec{0}
\end{array}$$

Show that 7 is an eigenvalue for

$$A = \left(\begin{array}{cc} 2 & 4 \\ 5 & 3 \end{array}\right).$$

Note

$$A\vec{x} = \lambda \vec{x}$$

$$\Leftrightarrow A\vec{x} - \lambda \vec{x} = \vec{0}$$

$$\Leftrightarrow A\vec{x} - \lambda I \vec{x} = \vec{0}$$

$$\Leftrightarrow (A - \lambda I) \vec{x} = \vec{0}$$

$$\Leftrightarrow \vec{x} \in Nul(A - \lambda I)$$

DEFINITION

If $\dim(\operatorname{Nul}(A-\lambda I))>0$, then $\operatorname{Nul}(A-\lambda I)$ is called the eigenspace for A corresponding to the eigenvalue λ , since any $\vec{x}\in\operatorname{Nul}(A-\lambda I)$ satisfies $A\vec{x}=\lambda\vec{x}$.

DEFINITION

If $\dim(\operatorname{Nul}(A-\lambda I))>0$, then $\operatorname{Nul}(A-\lambda I)$ is called the eigenspace for A corresponding to the eigenvalue λ , since any $\vec{x}\in\operatorname{Nul}(A-\lambda I)$ satisfies $A\vec{x}=\lambda\vec{x}$.

EXAMPLE

Find a basis for the eigenspace corresponding to the eigenvector 2 for the matrix

$$A = \left(\begin{array}{ccc} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{array}\right).$$

The eigenvalues of an upper triangular matrix (or of a lower triangular matrix) are its diagonal entries.

The eigenvalues of an upper triangular matrix (or of a lower triangular matrix) are its diagonal entries.

Invertible Matrix Theorem

The number 0 is an eigenvalue of A

The eigenvalues of an upper triangular matrix (or of a lower triangular matrix) are its diagonal entries.

Invertible Matrix Theorem

The number 0 is an eigenvalue of A

 \iff there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} = 0\vec{x}$

 \iff

The eigenvalues of an upper triangular matrix (or of a lower triangular matrix) are its diagonal entries.

Invertible Matrix Theorem

The number 0 is an eigenvalue of A

 \iff there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} = 0\vec{x}$

 \iff there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} - 0\vec{x} = \vec{0}$.

 \iff

Theorem

The eigenvalues of an upper triangular matrix (or of a lower triangular matrix) are its diagonal entries.

INVERTIBLE MATRIX THEOREM

The number 0 is an eigenvalue of A

 \iff there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} = 0\vec{x}$

 \iff there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} - 0\vec{x} = \vec{0}$.

 \iff There exists $\vec{x} \neq \vec{0} \in \text{Nul}(A)$.

 \iff

The eigenvalues of an upper triangular matrix (or of a lower triangular matrix) are its diagonal entries.

Invertible Matrix Theorem

The number 0 is an eigenvalue of A

 \iff there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} = 0\vec{x}$

 \iff there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} - 0\vec{x} = \vec{0}$.

 \iff There exists $\vec{x} \neq \vec{0} \in \text{Nul}(A)$.

 \iff A is not invertible.

The eigenvalues of an upper triangular matrix (or of a lower triangular matrix) are its diagonal entries.

INVERTIBLE MATRIX THEOREM

The number 0 is an eigenvalue of A

 \iff there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} = 0\vec{x}$

 \iff there exists $\vec{x} \neq \vec{0}$ so that $A\vec{x} - 0\vec{x} = \vec{0}$.

 \iff There exists $\vec{x} \neq \vec{0} \in \text{Nul}(A)$.

 \iff *A* is not invertible.

THEOREM

If $\vec{v}_1, \ldots, \vec{v}_r$ are eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\vec{v}_1, \ldots, \vec{v}_r\}$ is linearly independent.

In many applications, one is interested in studying repeated application of a linear map.

In many applications, one is interested in studying repeated application of a linear map.

Suppose we would like to study the long term behavior of a sequence $\{\vec{x}_k\}$ satisfying $\vec{x}_{k+1} = A\vec{x}_k$.

In many applications, one is interested in studying repeated application of a linear map.

Suppose we would like to study the long term behavior of a sequence $\{\vec{x}_k\}$ satisfying $\vec{x}_{k+1} = A\vec{x}_k$.

Describe the long term behavior of such a sequence where $\vec{x_0}$ is an eigenvector of A with eigenvalue λ .

In many applications, one is interested in studying repeated application of a linear map.

Suppose we would like to study the long term behavior of a sequence $\{\vec{x}_k\}$ satisfying $\vec{x}_{k+1} = A\vec{x}_k$.

Describe the long term behavior of such a sequence where $\vec{x_0}$ is an eigenvector of A with eigenvalue λ .