MTHSC 3110 Section 5.2 – The Characteristic Equation

Kevin James

Note

To find the eigenvalues of a matrix A, we must determine values $\lambda \in \mathbb{R}$ such that $\operatorname{Nul}(A - \lambda I) \neq \{\vec{0}\}.$

Recall that this is equivalent to $A - \lambda I$ being singular or $det(A - \lambda I) = 0$.

EXAMPLE

Find the eigenvalues of
$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$$

FACT

For a general 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the formula for the determinant enables us to compute the eigenvalues easily.

$$\det(A - \lambda I) = \det\begin{pmatrix} (a - \lambda) & b \\ c & (d - \lambda) \end{pmatrix}$$
$$= (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc).$$

So that the quadratic formula gives

$$\lambda = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad-bc)}}{2}.$$

ADVANCED EXAMPLE

Let $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ be the matrix which rotates a vector counter clockwise through an angle θ . Then we have

$$\det(A - \lambda I) = \lambda^2 - 2\lambda \cos \theta + 1.$$

So $\lambda = \cos \theta \pm \sqrt{\cos^2 \theta - 1} = \cos \theta \pm i \sin \theta = e^{\pm i\theta}$, where $i = \sqrt{-1}$. So unless $\sin \theta = 0$, there are no real eigenvalues.

Theorem (The Invertible Matrix Theorem continued)

Let A be an $n \times n$ matrix. Then A is invertible if and only if

- (S) The number 0 is not an eigenvalue of A.
- (T) The determinant of A is not zero.

THEOREM (PROPERTIES OF DETERMINANTS)

Let A and B be $n \times n$ matrices.

- (A) A is invertible if and only if $det(A) \neq 0$
- (B) det(AB) = det(A) det(B).
- (C) $det(A^T) = det(A)$.
- (D) If A is triangular, then det(A) is the product of the entries on the main diagonal.
- (E) A row replacement operation on A doesn't change the determinant. A row interchange switches the sign of the determinant. A row scaling also scales the determinant by the same scale factor.

THEOREM

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation

$$\det(A - \lambda I) = 0.$$

FACT

 $det(A - \lambda I)$ is a polynomial in λ of degree n.

Hence, an $n \times n$ matrix has at most n eigenvalues.

DEFINITION

- **1** The degree n polynomial $det(A \lambda I)$ is called the characteristic polynomial.
- 2 The (algebraic) multiplicity of the eigenvalue λ_0 is the power of $(\lambda \lambda_0)$ appearing in the factorization of the characteristic polynomial.

EXAMPLE

Find the eigenvalues and their multiplicities of

$$A = \left(\begin{array}{cccc} 6 & 5 & 0 & -5 \\ 0 & -3 & 1 & 2 \\ 0 & 0 & 6 & 3 \\ 0 & 0 & 0 & 7 \end{array}\right).$$

DEFINITION

Two $n \times n$ matrices A and B are similar if there is an invertible matrix P so that $P^{-1}AP = B$, or equivalently $A = PBP^{-1}$.

THEOREM

If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomials.

EXAMPLE

Let
$$A = \begin{pmatrix} .95 & .03 \\ .05 & .97 \end{pmatrix}$$
.

Take
$$x_0 = \begin{pmatrix} .6 \\ .4 \end{pmatrix}$$
, and $x_{k+1} = Ax_k$ for $k \ge 0$.

Analyze the long term behavior of this sequence.