MTHSC 3110 Section 5.3 – Diagonalization

Kevin James

Kevin James MTHSC 3110 Section 5.3 – Diagonalization

回 とくほとくほど

臣

DEFINITION

A matrix
$$D = (d_{ij})$$
 if diagonal if $d_{ij} = 0$ whenever $i \neq j$.

EXAMPLE

Let
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
.
Compute D^k for $k = 1, 2, \dots$

EXAMPLE

Suppose that P is invertible and that $A = PDP^{-1}$. Compute A^k for k = 1, 2, ...

イロン イヨン イヨン イヨン

크

DEFINITION

An $n \times n$ matrix A is said to be diagonalizable if there exists a an invertible matrix P and a diagonal matrix D (each $n \times n$) with $A = PDP^{-1}$ (or equivalently, since P is invertible, AP = PD). That is, A is diagonalizable if it is similar to a diagonal matrix.

THEOREM (THE DIAGONALIZATION THEOREM)

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case the diagonal entries of D are the eigenvalues of A, with the jjth entry of D being the eigenvalue corresponding to the eigenvector which is the jth column of P.

イロト イヨト イヨト イヨト

Note

Suppose A is $n \times n$. Then A is diagonalizable if and only if there is a basis for \mathbb{R}^n made up of eigenvectors for A.

Proof

Suppose that D is a diagonal $n \times n$ matrix with entries $\lambda_1, \ldots, \lambda_n$, and $P = [\vec{p_1}, \ldots, \vec{p_n}]$ is $n \times n$. Then,

$$PD = [P\vec{d}_1, \ldots, P\vec{d}_n] = [\lambda_1 \vec{p}_1, \ldots, \lambda_n \vec{p}_n].$$

Also,

$$AP = [A\vec{p}_1, \ldots, A\vec{p}_n]$$

So AP = PD if and only if $A\vec{p_i} = \lambda_i \vec{p_i}$ for $1 \le i \le n$.

イロン 不同 とうほう イヨン

Э

Proof continued...

If A is diagonalizable, then $A = PDP^{-1} \Rightarrow AP = PD$.

From our earlier observation, it follows that $\vec{p_i}$ is an eigenvector for A w.r.t the eigenvalue λ_i .

Further, since *P* is invertible, it follows that $\{\vec{p_1}, \ldots, \vec{p_n}\}$ is a basis for \mathbb{R}^n .

Now suppose that $\{\vec{p_1}, \ldots, \vec{p_n}\}$ is a basis for \mathbb{R}^n composed of eigenvectors for A with eigenvalues $\lambda_1, \ldots, \lambda_n$.

Let $P = [\vec{p_1}, \dots, \vec{p_n}]$ and let D be the diagonal $n \times n$ matrix with entries $\lambda_1, \dots, \lambda_n$.

Then from before, we have AP = PD. Also, P is invertible.

Thus, $A = PDP^{-1}$ and A is diagonalizable.

(4月) (4日) (4日)

EXAMPLE

Is
$$A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$$
 diagonalizable? If so, find P and D .

EXAMPLE

Ľ

s
$$B = \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight)$$
 diagonalizable? If so, find P and D .

Kevin James MTHSC 3110 Section 5.3 – Diagonalization

・ロ・・日・・日・・日・ 日

COROLLARY

An $n \times n$ matrix A having n distinct eigenvalues is diagonalizable.

Proof.

We saw earlier that eigenvectors corresponding to distinct eigenvalues are linearly independent. Each eigenvalue has at least one corresponding eigenvector. Hence, we have *n* linearly independent eigenvectors, and *A* is diagonalizable.

Theorem

Let A be $n \times n$ with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- **1** For $1 \le k \le p$, the dimension of the eigenspace w.r.t. λ_k is less than or equal to the algebraic multiplicity of λ_k . (-i.e. dim $(Nul(A \lambda_k I)) \le mult(\lambda_k)$).
- 2 A is diagonalizable if and only if

$$\sum_{k=1}^{p} \dim (Nul(A - \lambda_k I)) = n$$

$$\Leftrightarrow \dim(Nul(A - \lambda_k I)) = mult(\lambda_k) \quad for \ 1 \le k \le p.$$

3 If A is diagonalizable and if $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_p$ are bases for the eigenspaces for A corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_p$ respectively, then $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_p$ is an eigenvector basis for \mathbb{R}^n .

< ロ > < 同 > < 三 > < 三 >