MTHSC 3110 Section 6.1 – Inner Product, Length and Orthoganality

Kevin James

DEFINITION

Suppose that $\vec{u}, \vec{v} \in \mathbb{R}^n$. We define the inner product or dot product or \vec{u} and \vec{v} as

$$u \cdot v = u^t v = \sum_{i=1}^n u_i v_i.$$

EXAMPLE

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} = (1)(-1) + (2)(-2) + (3)(1) = -2.$$

THEOREM

Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let c be a scalar. Then

- $\mathbf{1} \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}.$
- $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}.$
- $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}).$
- 4 $\vec{u} \cdot \vec{u} \ge 0$ and $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$.
- $(c_1\vec{u}_1+\cdots+c_p\vec{u}_p)\cdot\vec{w}=c_1\vec{u}_1\cdot\vec{w}+c_p\vec{u}_p\cdot\vec{w}.$

DEFINITION (LENGTH)

The *length* (or *norm*) of \vec{v} is the non-negative scalar $\|\vec{v}\|$ defined by

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \text{ and } \|\vec{v}\|^2 = \vec{v} \cdot \vec{v}.$$

Note

This definition is chosen so that the Pythagorean theorem holds (that is, in two dimensions the length c of the vector which is the hypotenuse of a right triangle with horizontal length a and vertical height b satisfies $a^2 + b^2 = c^2$.

FACT

- **1** For any scalar c, $||c\vec{v}|| = |c| ||\vec{v}||$.
- 2 A vector of length 1 is called a <u>unit vector</u>.
- **3** If $\vec{v} \neq \vec{0}$ then $\frac{1}{\|\vec{v}\|}\vec{v}$ is a unit vector and is in the same direction as \vec{v} .
- 4 The above process is called normalizing.

EXAMPLE

Find a unit vector which is in the same direction as $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

DEFINITION

For \vec{u} and \vec{v} in \mathbb{R}^n , the distance between \vec{u} and \vec{v} , written as $\operatorname{dist}(\vec{u}, \vec{v})$ is the length of the vector $\vec{u} - \vec{v}$. That is,

$$\mathsf{dist}(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|.$$

EXAMPLE

Compute the distance dist $\left(\left(\begin{array}{c} 7 \\ 2 \end{array} \right), \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \right)$.

DEFINITION

Two vectors in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$.

Note

$$\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

$$= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v}\vec{v}$$

$$= \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$$

THEOREM (PYTHAGORUS)

 $||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2$ if and only if \vec{u} and \vec{v} are orthogonal.

DEFINITION

Suppose that $W \leq \mathbb{R}^n$.

- **1** If for all $\vec{w} \in W$, $\vec{z} \cdot \vec{w} = 0$, I then we say that \vec{z} is orthogonal to W and write $z \perp W$.
- **2** We define the orthogonal compliment of W as $W^{\perp} = \{\vec{z} \in \mathbb{R}^n \mid \vec{z} \perp W\}.$

EXAMPLE

Suppose that
$$W = \operatorname{Span}\left(\left(\begin{array}{c}1\\0\\0\end{array}\right), \left(\begin{array}{c}0\\1\\0\end{array}\right)\right).$$

Describe W^{\perp} .

FACT

- **1** $\vec{x} \in W^{\perp}$ if and only if $\vec{x} \perp \vec{w}$ for all \vec{w} in a spanning set for W.
- $\mathbf{Q} \ W^{\perp} \leq \mathbb{R}^n$.

THEOREM

Suppose that A is an $n \times n$ matrix.

- $(Col(A))^{\perp} = Nul(A^t).$

Note

In two or three dimensions, the projection of \vec{v} onto \vec{u} has length $\|\vec{v}\|\cos\theta$, where θ is the angle between the vectors. Hence

$$\|\vec{v}\|\cos\theta = c\|\vec{u}\|$$

so that

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta.$$

In higher dimensions than three we use this to *define* the angle between two vectors.