MTHSC 3110 Section 6.1 – Inner Product, Length and Orthoganality

Kevin James

Kevin James MTHSC 3110 Section 6.1 – Inner Product, Length and Ortho

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose that $\vec{u}, \vec{v} \in \mathbb{R}^n$. We define the inner product or dot procuct or \vec{u} and \vec{v} as

$$u \cdot v = u^t v = \sum_{i=1}^n u_i v_i.$$

イロン 不同 とくほど 不同 とう

Suppose that $\vec{u}, \vec{v} \in \mathbb{R}^n$. We define the inner product or dot procuct or \vec{u} and \vec{v} as

$$u \cdot v = u^t v = \sum_{i=1}^n u_i v_i.$$

Example

 $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} =$

Suppose that $\vec{u}, \vec{v} \in \mathbb{R}^n$. We define the inner product or dot procuct or \vec{u} and \vec{v} as

$$u \cdot v = u^t v = \sum_{i=1}^n u_i v_i.$$

EXAMPLE $\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1\\ -2\\ 1 \end{pmatrix} = (1)(-1) + (2)(-2) + (3)(1) = -2.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

Theorem

Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let c be a scalar. Then $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$. $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$. $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v})$. $\vec{u} \cdot \vec{u} \ge 0$ and $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$. $(c_1\vec{u}_1 + \dots + c_p\vec{u}_p) \cdot \vec{w} = c_1\vec{u}_1 \cdot \vec{w} + c_p\vec{u}_p \cdot \vec{w}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへの

Theorem

Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let c be a scalar. Then $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$. $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$. $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v})$. $\vec{u} \cdot \vec{u} \ge 0$ and $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$. $(c_1\vec{u}_1 + \dots + c_p\vec{u}_p) \cdot \vec{w} = c_1\vec{u}_1 \cdot \vec{w} + c_p\vec{u}_p \cdot \vec{w}$.

DEFINITION (LENGTH)

The *length* (or *norm*) of \vec{v} is the non-negative scalar $\|\vec{v}\|$ defined by

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 and $\|\vec{v}\|^2 = \vec{v} \cdot \vec{v}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへの

This definition is chosen so that the Pythagorean theorem holds (that is, in two dimensions the length c of the vector which is the hypotenuse of a right triangle with horizontal length a and vertical height b satisfies $a^2 + b^2 = c^2$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

This definition is chosen so that the Pythagorean theorem holds (that is, in two dimensions the length c of the vector which is the hypotenuse of a right triangle with horizontal length a and vertical height b satisfies $a^2 + b^2 = c^2$.

Fact

1 For any scalar
$$c$$
, $||c\vec{v}|| = |c| ||\vec{v}||$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

This definition is chosen so that the Pythagorean theorem holds (that is, in two dimensions the length c of the vector which is the hypotenuse of a right triangle with horizontal length a and vertical height b satisfies $a^2 + b^2 = c^2$.

Fact

- **1** For any scalar c, $||c\vec{v}|| = |c| ||\vec{v}||$.
- 2 A vector of length 1 is called a <u>unit vector</u>.

・ロト ・回ト ・ヨト ・ヨト - ヨ

This definition is chosen so that the Pythagorean theorem holds (that is, in two dimensions the length c of the vector which is the hypotenuse of a right triangle with horizontal length a and vertical height b satisfies $a^2 + b^2 = c^2$.

Fact

- **1** For any scalar c, $||c\vec{v}|| = |c| ||\vec{v}||$.
- 2 A vector of length 1 is called a <u>unit vector</u>.
- **3** If $\vec{v} \neq \vec{0}$ then $\frac{1}{\|\vec{v}\|}\vec{v}$ is a unit vector and is in the same direction as \vec{v} .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ○○○

This definition is chosen so that the Pythagorean theorem holds (that is, in two dimensions the length c of the vector which is the hypotenuse of a right triangle with horizontal length a and vertical height b satisfies $a^2 + b^2 = c^2$.

Fact

- **1** For any scalar c, $||c\vec{v}|| = |c| ||\vec{v}||$.
- 2 A vector of length 1 is called a <u>unit vector</u>.
- If v ≠ 0 then 1/||v|| v is a unit vector and is in the same direction as v.
- In the above process is called normalizing.

・ロト ・回ト ・ヨト ・ヨト … ヨ

EXAMPLE Find a unit vector which is in the same direction as $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

イロト イヨト イヨト イヨト

EXAMPLE

Find a unit vector which is in the same direction as $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

DEFINITION

For \vec{u} and \vec{v} in \mathbb{R}^n , the *distance between* \vec{u} and \vec{v} , written as dist (\vec{u}, \vec{v}) is the length of the vector $\vec{u} - \vec{v}$. That is,

$$\mathsf{dist}(\vec{u},\vec{v}) = \|\vec{u}-\vec{v}\|.$$

<ロ> (四) (四) (三) (三) (三)

EXAMPLE

Find a unit vector which is in the same direction as $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

DEFINITION

For \vec{u} and \vec{v} in \mathbb{R}^n , the *distance between* \vec{u} and \vec{v} , written as dist (\vec{u}, \vec{v}) is the length of the vector $\vec{u} - \vec{v}$. That is,

$$\mathsf{dist}(\vec{u},\vec{v}) = \|\vec{u} - \vec{v}\|.$$

EXAMPLE

Compute the distance dist $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

$$\begin{pmatrix} 7\\2 \end{pmatrix}, \begin{pmatrix} 4\\3 \end{pmatrix}$$
)

イロン イヨン イヨン

Two vectors in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$.

イロン イヨン イヨン

臣

Two vectors in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$.

Note

$$\|\vec{u} - \vec{v}\|^{2} = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

= $\vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v}\vec{v}$
= $\|\vec{u}\|^{2} + \|\vec{v}\|^{2} - 2\vec{u} \cdot \vec{v}$

Two vectors in \mathbb{R}^n are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$.

Note

$$\|\vec{u} - \vec{v}\|^{2} = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

= $\vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v}\vec{v}$
= $\|\vec{u}\|^{2} + \|\vec{v}\|^{2} - 2\vec{u} \cdot \vec{v}$

THEOREM (PYTHAGORUS)

 $||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2$ if and only if \vec{u} and \vec{v} are orthogonal.

イロト イヨト イヨト イヨト 三日

Suppose that $W \leq \mathbb{R}^n$.

- **1** If for all $\vec{w} \in W$, $\vec{z} \cdot \vec{w} = 0$, I then we say that \vec{z} is orthogonal to W and write $z \perp W$.
- **2** We define the orthogonal compliment of W as $W^{\perp} = \{ \vec{z} \in \mathbb{R}^n \mid \vec{z} \perp W \}.$

イロト イヨト イヨト イヨト 三日

Suppose that $W \leq \mathbb{R}^n$.

- **1** If for all $\vec{w} \in W$, $\vec{z} \cdot \vec{w} = 0$, I then we say that \vec{z} is orthogonal to W and write $z \perp W$.
- **2** We define the orthogonal compliment of W as $W^{\perp} = \{ \vec{z} \in \mathbb{R}^n \mid \vec{z} \perp W \}.$

EXAMPLE

Suppose that
$$W = \text{Span}\left(\begin{pmatrix}1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\end{pmatrix}\right)$$
.

Describe W^{\perp} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Fact

 x ∈ W[⊥] if and only if x ⊥ w for all w in a spanning set for W.
W[⊥] < ℝⁿ.

イロト イヨト イヨト イヨト

Fact

 x ∈ W[⊥] if and only if x ⊥ w for all w in a spanning set for W.
W[⊥] < ℝⁿ.

Theorem

Suppose that A is an $n \times n$ matrix.

$$(Row(A))^{\perp} = Nul(A).$$

$$(Col(A))^{\perp} = Nul(A^t).$$

イロン イボン イモン イモン 三日

In two or three dimensions, the projection of \vec{v} onto \vec{u} has length $\|\vec{v}\| \cos \theta$, where θ is the angle between the vectors. Hence

$$\|\vec{v}\|\cos\theta = c\|\vec{u}\|$$

so that

$$\vec{u}\cdot\vec{v}=\|\vec{u}\|\|\vec{v}\|\cos\theta.$$

In higher dimensions than three we use this to *define* the angle between two vectors.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →