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Definition

A set {~u1, ~u2, . . . , ~uk} of non-zero vectors is said to be orthogonal
if for every i 6= j ,

~ui · ~uj = 0,

that is, if every pair of vectors is orthogonal.
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Example

Show that


 3

1
1

 ,

 −1
2
1

 ,

 1
4
−7

 . is orthogonal.

Solution 3
1
1

 ·
 −1

2
1

 = (3)(−1) + (1)(2) + (1)(1) = 0. 3
1
1

 ·
 1

4
−7

 = (3)(1) + (1)(4) + (1)(−7) = 0 −1
2
1

 ·
 1

4
−7

 = (−1)(1) + (2)(4) + (1)(−7) = 0.

Kevin James MTHSC 3110 Section 6.2 – Orthogonal Sets



Example

Show that


 3

1
1

 ,

 −1
2
1

 ,

 1
4
−7

 . is orthogonal.

Solution 3
1
1

 ·
 −1

2
1

 =

(3)(−1) + (1)(2) + (1)(1) = 0. 3
1
1

 ·
 1

4
−7

 = (3)(1) + (1)(4) + (1)(−7) = 0 −1
2
1

 ·
 1

4
−7

 = (−1)(1) + (2)(4) + (1)(−7) = 0.

Kevin James MTHSC 3110 Section 6.2 – Orthogonal Sets



Example

Show that


 3

1
1

 ,

 −1
2
1

 ,

 1
4
−7

 . is orthogonal.

Solution 3
1
1

 ·
 −1

2
1

 = (3)(−1) + (1)(2) + (1)(1) = 0.

 3
1
1

 ·
 1

4
−7

 = (3)(1) + (1)(4) + (1)(−7) = 0 −1
2
1

 ·
 1

4
−7

 = (−1)(1) + (2)(4) + (1)(−7) = 0.

Kevin James MTHSC 3110 Section 6.2 – Orthogonal Sets



Example

Show that


 3

1
1

 ,

 −1
2
1

 ,

 1
4
−7

 . is orthogonal.

Solution 3
1
1

 ·
 −1

2
1

 = (3)(−1) + (1)(2) + (1)(1) = 0. 3
1
1

 ·
 1

4
−7

 =

(3)(1) + (1)(4) + (1)(−7) = 0 −1
2
1

 ·
 1

4
−7

 = (−1)(1) + (2)(4) + (1)(−7) = 0.

Kevin James MTHSC 3110 Section 6.2 – Orthogonal Sets



Example

Show that


 3

1
1

 ,

 −1
2
1

 ,

 1
4
−7

 . is orthogonal.

Solution 3
1
1

 ·
 −1

2
1

 = (3)(−1) + (1)(2) + (1)(1) = 0. 3
1
1

 ·
 1

4
−7

 = (3)(1) + (1)(4) + (1)(−7) = 0

 −1
2
1

 ·
 1

4
−7

 = (−1)(1) + (2)(4) + (1)(−7) = 0.

Kevin James MTHSC 3110 Section 6.2 – Orthogonal Sets



Example

Show that


 3

1
1

 ,

 −1
2
1

 ,

 1
4
−7

 . is orthogonal.

Solution 3
1
1

 ·
 −1

2
1

 = (3)(−1) + (1)(2) + (1)(1) = 0. 3
1
1

 ·
 1

4
−7

 = (3)(1) + (1)(4) + (1)(−7) = 0 −1
2
1

 ·
 1

4
−7

 =

(−1)(1) + (2)(4) + (1)(−7) = 0.

Kevin James MTHSC 3110 Section 6.2 – Orthogonal Sets



Example

Show that


 3

1
1

 ,

 −1
2
1

 ,

 1
4
−7

 . is orthogonal.

Solution 3
1
1

 ·
 −1

2
1

 = (3)(−1) + (1)(2) + (1)(1) = 0. 3
1
1

 ·
 1

4
−7

 = (3)(1) + (1)(4) + (1)(−7) = 0 −1
2
1

 ·
 1

4
−7

 = (−1)(1) + (2)(4) + (1)(−7) = 0.

Kevin James MTHSC 3110 Section 6.2 – Orthogonal Sets



Theorem

If {~u1, ~u2, . . . , ~uk} is an orthogonal set of nonzero vectors, then it is
linearly independent. Hence it is a basis for the space that it spans.

Proof.

Suppose that
∑k

i=1 ci ~ui = ~0.
Then for 1 ≤ j ≤ k, we have

0 = ~uj ·~0 = = ~uj ·
k∑

i=1

ci ~ui

=
k∑

i=1

ci (~uj · ~ui ) = cj (~uj · ~uj) .

⇒ cj = 0 (because, ~uj 6= ~0).

Thus c1 = c2 = · · · = ck = 0, and our set is indeed
independent.
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Definition

An orthogonal basis for a subspace W < Rn is a basis for W which
is an orthogonal set.

Theorem

Let W < Rn, and let S = {~u1, ~u2, . . . , ~uk} be an orthogonal basis
for W . Then if the vector ~y in W is given in terms of the basis S
by

~y = c1~u1 + c2~u2 + · · ·+ ck~uk

then

cj =
~y · ~uj
~uj · ~uj
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Proof.

Since, S is a basis, we know that every vector ~y ∈W has a unique
representation as a linear combination of vectors in S .

That is, we can write y =
∑k

i=1 ci ~ui .
Thus, for 1 ≤ j ≤ k , we have

~uj · ~y = ~uj ·
k∑

i=1

ci ~ui =
k∑

i=1

ci (~uj · ~ui )

= cj (~uj · ~uj) .

⇒ cj =
~uj · ~y
~uj · ~uj

.
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Example

We saw above that

S =

~v1 =

 3
1
1

 , ~v2 =

 −1
2
1

 , ~v3 =

 1
4
−7

 is an

orthogonal set in R3. Since it is linearly independent and has three
vectors in it, it must be a basis for R3. Express the vector

~y =

 2
4
6

 in terms of the vectors in S .
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Solution

~y = c1 ~v1 + c2 ~v2 + c3 ~v3, where

c1 =
~v1 · ~y
~v1 · ~v1

=
(3)(2) + (1)(4) + (1)(6)

32 + 12 + 12
=

16

11

c2 =
~v2 · ~y
~v2 · ~v2

=
(−1)(2) + (2)(4) + (1)(6)

(−1)2 + 22 + 12
=

12

6
= 2

c3 =
~v3 · ~y
~v3 · ~v3

=
(1)(2) + (4)(4) + (−7)(6)

12 + 42 + (−7)2
=
−24

66
=
−4

11
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Orthogonal Projections
Earlier we saw how to find the component of ~v in the direction of
~u and the component orthogonal to ~u. We revisit this idea to
introduce some notation, and to extend it to projecting onto a
subspace.
Given ~y ∈ Rn and ~u ∈ Rn, find ŷ , ~z ∈ Rn so that

1 ~y = ŷ + ~z .

2 ŷ = α~u (α ∈ R).

3 ~u · ~z = 0.
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As before, we see that

~y · ~u = ŷ · ~u = (α~u) · ~u = α‖~u‖2

so

α =
~y · ~u
‖~u‖2

and

~z = ~y −
~y · ~u
‖~u‖2

~u

Notation

ŷ = ProjL(~y) =
~y · ~u
‖~u‖2

~u

where L = Span(~u).
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Terminology

~y = ŷ + ~z :
ŷ is the orthogonal projection of ~y onto L
~z is the component of ~y orthogonal to L.

Example

Let ~y =

(
7
6

)
, ~u =

(
4
2

)
and L = Span(~u). Compute the

orthogonal projection of ~y onto L and the component of ~y
orthogonal to L. Plot ~y , ~u, ŷ and ~z . Compute the distance from ~y
to L. (Note: the subspace L here is the line through ~0 and ~u.)
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orthogonal projection of ~y onto L and the component of ~y
orthogonal to L. Plot ~y , ~u, ŷ and ~z . Compute the distance from ~y
to L. (Note: the subspace L here is the line through ~0 and ~u.)
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Geometric Interpretation of Theorem 5

Let {~u1, ~u2} be an orthogonal basis for R2. Put

ŷ1 =
~y · ~u1
‖~u1‖2

~u1 = Proj~u1(~y)

ŷ2 =
~y · ~u2
‖~u2‖2

~u2 = Proj~u2(~y)

Then
~y = ŷ1 + ŷ2.
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Definition

Orthonormal Sets A set ~u1, ~u2, . . . , ~up is called orthonormal if it is
orthogonal and ‖~ui‖ = 1 for 1 ≤ i ≤ p. In this case, if
W = Span(~u1, . . . , ~up), then the set is called an orthonormal basis
for W .

Example

The set ~e1, ~e2, . . . , ~en is an orthonormal basis for Rn.

Example

Show that the set {~v1, ~v2, ~v3} is an orthornormal basis for R3,
where

~v1 =

 3/
√

11

1/
√

11

1/
√

11

 , ~v2 =

 −1/
√

6

2/
√

6

1/
√

6

 , ~v3 =

 1/
√

66

4/
√

66

−7/
√

66

 .
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Theorem

An m × n matrix U has orthonormal columns if and only if
UTU = I .

Proof: proof strategy: interpret the entries of UTU in terms of
inner products of the columns of U.

Kevin James MTHSC 3110 Section 6.2 – Orthogonal Sets



Theorem

Let U be an m × n matrix with orthonormal columns, and
~x , ~y ∈ Rn. Then

1 ‖U~x‖ = ‖~x‖.
2 (U~x) · (U~y) = ~x · ~y.
3 (U~x) · (U~y) = 0 if and only if ~x · ~y = 0.

Note

1 U preserves length

2 U preserves orthonormality.

Proof.

(U~x) · (U~y) = (U~x)T (U~y) = (~xTUT )(U~y) = ~xT (UTU)~y = ~x · ~y

This proves part 2. 1 & 3 follow from 2.
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Example

Let

U =

 1/
√

2 2/3

1/
√

2 −2/3
0 1/3

 and ~x =

( √
2
3

)
.

Check that U has orthonormal columns and that ‖U~x‖ = ‖~x‖.

Note

In the case where U is a an n × n matrix with orthonormal
columns, we see that UTU = I so UT = U−1, so UUT = I as
well: that is, U has orthonormal rows too!
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