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A set {ih, o, ..., Uy} of non-zero vectors is said to be orthogonal
if for every i # j,

that is, if every pair of vectors is orthogonal.
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Show that 11, 2 |, 4 . is orthogonal.

Kevin James MTHSC 3110 Section 6.2 — Orthogonal Sets



EXAMPLE

3 -1 1
Show that 11, 2 |, 4 . is orthogonal.
1 1 -7
3 -1
1 ]- 2 | =
1 1

A\
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EXAMPLE

3 -1 1
Show that 11, 2 |, 4 . is orthogonal.
1 1 -7
3 -1
L]l 2| =0C)FEN+M)@2)+A)(1)=0
1 1

A\
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EXAMPLE

3 -1 1
Show that 11, 2 |, 4 . is orthogonal.

1 1 -7

3 -1

1 2 | =0B)(-1)+ 1))+ (1)) =0

1 1

3 1

1 4 | =

1 -7

A\
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EXAMPLE

3 -1 1
Show that 11, 2 |, 4 . is orthogonal.
1 1 -7
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EXAMPLE

3 -1 1
Show that 11, 2 |, 4 . is orthogonal.
1 1 -7

SOLUTION

—1
2 ) +(1)(2) + (1)(1) = 0.
1
1
4) 1)(4)+(1)(=7)=0
7

1

4

—7

%)-( )
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EXAMPLE

3 -1 1
Show that 11, 2 |, 4 . is orthogonal.
1 1 -7

SOLUTION

1
1 2) 2) + (1)(1) = 0.
1 1
3 1
1) ( 4) 4)+(1)(~7) =0
1 7
—1 1
i)( ‘71)( 1)(1) + (2)(4) + (1)(=7) =0.
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If{iy, U, ..., Uk} is an orthogonal set of nonzero vectors, then it is
linearly independent. Hence it is a basis for the space that it spans.

Kevin James MTHSC 3110 Section 6.2 — Orthogonal Sets



THEOREM

If{iy, U, ..., Uk} is an orthogonal set of nonzero vectors, then it is
linearly independent. Hence it is a basis for the space that it spans.

PROOF.

Suppose that Zf-‘zl ¢ =0.
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THEOREM

If{iy, U, ..., Uk} is an orthogonal set of nonzero vectors, then it is
linearly independent. Hence it is a basis for the space that it spans.

PROOF.

Suppose that Zf-‘zl ¢ =0.
Then for 1 < j < k, we have
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THEOREM

If{iy, U, ..., Uk} is an orthogonal set of nonzero vectors, then it is
linearly independent. Hence it is a basis for the space that it spans.

PROOF.

Suppose that Zf-‘zl ¢ =0.
Then for 1 < j < k, we have
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THEOREM

If{iy, U, ..., Uk} is an orthogonal set of nonzero vectors, then it is
linearly independent. Hence it is a basis for the space that it spans.

PROOF.

Suppose that Zf-‘zl ¢ =0.
Then for 1 < j < k, we have
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THEOREM

If{iy, U, ..., Uk} is an orthogonal set of nonzero vectors, then it is
linearly independent. Hence it is a basis for the space that it spans.

PROOF.

Suppose that Zf-‘zl ¢ =0.
Then for 1 < j < k, we have

k
0 = §-0==0q-> cf
i=1
k
= > alg-a)=q(d ).
i=1
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THEOREM

If{iy, U, ..., Uk} is an orthogonal set of nonzero vectors, then it is
linearly independent. Hence it is a basis for the space that it spans.

PROOF.

Suppose that Zf-‘zl ¢ =0.
Then for 1 < j < k, we have

= ¢ =0 (because, d; # 0).

Thus ¢t = =---=cr =0, and our set is indeed
independent. Ol
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An orthogonal basis for a subspace W < R" is a basis for W which
is an orthogonal set.
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DEFINITION

An orthogonal basis for a subspace W < R" is a basis for W which
is an orthogonal set.

THEOREM

Let W <R", and let S = {i1, tp, ..., Uk} be an orthogonal basis
for W. Then if the vector y in W is given in terms of the basis S
by

| \

y=ci+ ol + - + crlik

then

N,
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PROOF.

Since, S is a basis, we know that every vector ¥ € W has a unique
representation as a linear combination of vectors in S.
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PROOF.

Since, S is a basis, we know that every vector ¥ € W has a unique
representation as a linear combination of vectors in S.

That is, we can write y = Zf-‘zl Cilj.
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PROOF.

Since, S is a basis, we know that every vector ¥ € W has a unique
representation as a linear combination of vectors in S.

That is, we can write y = S5 | ;7.

Thus, for 1 < j < k, we have

—

uj'y =
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PROOF.

Since, S is a basis, we know that every vector ¥ € W has a unique
representation as a linear combination of vectors in S.

That is, we can write y = S5 | ;7.

Thus, for 1 < j < k, we have

k
uj'y = UJ"E Ciu;
i=1
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PROOF.

Since, S is a basis, we know that every vector ¥ € W has a unique
representation as a linear combination of vectors in S.

That is, we can write y = S5 | ;7.

Thus, for 1 < j < k, we have

k

k
u-y = UJ"E C,'U,':E ci (dj - i)
i=1

i=1
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PROOF.

Since, S is a basis, we know that every vector ¥ € W has a unique
representation as a linear combination of vectors in S.

That is, we can write y = S5 | ;7.

Thus, for 1 < j < k, we have

k

k
u-y = UJ"E C,'U,':E ci (dj - i)
i=1

i=1

= (g -a).
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PROOF.

Since, S is a basis, we know that every vector ¥ € W has a unique
representation as a linear combination of vectors in S.

That is, we can write y = S5 | ;7.

Thus, for 1 < j < k, we have

k k
UJ_y = UJ" E Ciu; = E C,(UJU,)
i=1 i=1
= ¢ (gj-aqj).
iy
= G = _:l =
Ly = Wy
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We saw above that
3 -1 1
S=<vi=|1|,wn= 2 | ,n3= 4 is an
1 1 —7

orthogonal set in R3. Since it is linearly independent and has three
vectors in it, it must be a basis for R3. Express the vector

2
y =1 4 | in terms of the vectors in S.

6
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SOLUTION

y = cavi + v + c3v3, where
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SOLUTION

y = cavi + v + c3v3, where

iy
a = %
Vi Vi
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SOLUTION
y = avi+ ow + c3v3, where
vi-y  (3)(2)+(1)(4) +(1)(6) _ 16

32 +12 412 11

— —

Gl =
Vi-vi
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SOLUTION

y = cavi + v + c3v3, where

iy _ (3)2)+ 1))+ (1)6) _16

T T ua 2112 +12 11
-y

G = 42{
Vo - Vo
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SOLUTION

y = cavi + v + c3v3, where

o — vy _(3))+ D)4 +(1)6) _ 16
V7w 32112 412 T 11

o - 2y _ D@+ @)+ )6) _ 12,
> T B (—1)2 +22 +12 T 6
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SOLUTION

)7: civi + ovs + c3v3, where
o - vy _(3)2)+(@)4)+(1)(6) _ 16
! Vi vi 32+12112 11
_ vy (D@ +(2)(4) +(1)6) 12

C = > — - =2
Vo - Vo (—1)2+22+12 6

a3 = \:3{
V3 - Vv3
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SOLUTION

y = avi + cvs + c3v3, where
o - vy _(3)2)+(@)4)+(1)(6) _ 16
! Vi 32+12112 11
_ vy (D)@ +@)6) 12
Q = - o= 2192412 ~ 6
Vo - Vo (—1) +2 +1 6
L BT _ ()@@ +(T)6) _ 24 _ 4
2 Vv 12442 + (-7)2 66 11
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Orthogonal Projections
Earlier we saw how to find the component of V in the direction of
7 and the component orthogonal to ii. We revisit this idea to
introduce some notation, and to extend it to projecting onto a
subspace.
Given y € R" and 7 € R”, find §,Z € R" so that

Oy=y+2
® y=oai(aeR).
=0.

!

>

(<)
<y
Ny
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As before, we see that

Il
—~
Q
<
—
<y
Il
2
IS

y-o=y-i
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As before, we see that

yoi=9-i=(ad) d=ald?
SO .
y-u
==
112
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As before, we see that

y-o=y -u=(a) 0= ald

S0 o
y-u
(0% =
|12
and
L L o y-u
Z=y— =>U
| a2
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As before, we see that

<>
<y
I
—~
Q
&
<y
I
L2
=

yi=

SO

and

where L = Span(&).
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TERMINOLOGY

y=y+2z
y is the orthogonal projection of y onto L
Z is the component of y orthogonal to L.
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TERMINOLOGY

y=y+7
y is the orthogonal projection of y onto L
Z is the component of y orthogonal to L.

| \

EXAMPLE

6 2
orthogonal projection of ¥ onto L and the component of y
orthogonal to L. Plot ¥, i,  and Z. Compute the distance from y
to L. (Note: the subspace L here is the line through 0 and ir.)

Let y = ( ! > u= < 4 ) and L = Span(&). Compute the

A\
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GEOMETRIC INTERPRETATION OF THEOREM 5

Let {ify, i} be an orthogonal basis for R2. Put

. Y- L
Y1 = S=5 U1 = Projz (v
AL ()
L Y L
n = ——1i» = Proj
%2 =5 i, ()
Then
Y=+
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Orthonormal Sets A set iy, i, . . ., Uy is called orthonormal if it is
orthogonal and ||&i|| =1 for 1 < i < p. In this case, if
W = Span(df, . .., Up), then the set is called an orthonormal basis

for W.
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Orthonormal Sets A set iy, i, . . ., Uy is called orthonormal if it is
orthogonal and ||&i|| =1 for 1 < i < p. In this case, if

W = Span(df, . .., Up), then the set is called an orthonormal basis
for W.

The set €1, &, ..., &, is an orthonormal basis for R".
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Orthonormal Sets A set iy, i, . . ., Uy is called orthonormal if it is
orthogonal and ||&i|| =1 for 1 < i < p. In this case, if
W = Span(df, . .., Up), then the set is called an orthonormal basis

for W.

The set €1, &, ..., &, is an orthonormal basis for R”.

Show that the set {V, i, ¥3} is an orthornormal basis for R3,
where
3/V11 ~1/v/6 1//66
_'1: 1/\/ﬁ ) ‘72: 2/\/6 ) _’3: 4/\/%
1/V/11 1/v6 ~7//66
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An m x n matrix U has orthonormal columns if and only if
utu=1.

Proof: proof strategy: interpret the entries of U U in terms of
inner products of the columns of U.
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THEOREM

Let U be an m X n matrix with orthonormal columns, and
X,y € R". Then

0 ||Ux|| = [IX]|.
® (UxX)-(Uy)=X-y.
® (UX)- (Uy) =0 ifand only ifX-y = 0.
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THEOREM

Let U be an m X n matrix with orthonormal columns, and
X,y € R". Then

0 [|UX]| = [[X]
0 (Ux)-(Uy)=x-y.
0

® (UX)-(Uy) =0 ifand only if -y = 0.

| A

NOTE

@ U preserves length

® U preserves orthonormality.

A\
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THEOREM

Let U be an m X n matrix with orthonormal columns, and
X,y € R". Then

© |Ux]| = IX]-
® (Ux)-(Uy)=x-y.
® (UR)-(Uy)=0

@ U preserves length

if and only if X - y = 0.

® U preserves orthonormality.

(UR) - (Uy) = (UX)T(Uy) = (xTUT)(Uy) =xT(UTU)y =%y

This proves part 2. 1 & 3 follow from 2. [
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EXAMPLE

Let
1/vV2  2/3
U=\ 1/v2 -2/3 and z:<\/§>
0 1/3
Check that U has orthonormal columns and that ||Ux|| = ||X]|.
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EXAMPLE
Let

U=\ 1/v2 -2/3 3

1/vV2  2/3
0 1/3 o ;:<ﬁ>

Check that U has orthonormal columns and that ||Ux|| = ||X]|.

In the case where U is a an n X n matrix with orthonormal
columns, we see that UTU =1so UT = U1, so UUT =1 as
well: that is, U has orthonormal rows too!
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