MTHSC 3110 Section 6.3 – Orthogonal Projection

Kevin James

We extend the idea of projections onto a 1-dimensional space to the idea of projecting onto an arbitrary subspace. We extend the idea of projections onto a 1-dimensional space to the idea of projecting onto an arbitrary subspace.

THEOREM

Let $W < \mathbb{R}^n$. Then any vector $\vec{y} \in \mathbb{R}^n$ can be written uniquely as

$$\vec{y} = \hat{y} + \vec{z}$$

where $\hat{y} \in W$, and $\vec{z} \in W^{\perp}$.

We extend the idea of projections onto a 1-dimensional space to the idea of projecting onto an arbitrary subspace.

Theorem

Let $W < \mathbb{R}^n$. Then any vector $\vec{y} \in \mathbb{R}^n$ can be written uniquely as

$$\vec{y} = \hat{y} + \vec{z}$$

where $\hat{y} \in W$, and $\vec{z} \in W^{\perp}$.

If $S = \{\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}\}$ is an orthogonal basis for W, then \hat{y} is given in terms of the basis S by

$$\hat{y} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_k \vec{u}_k$$

then

$$c_j = \frac{\vec{y} \cdot \vec{u_j}}{\vec{u_j} \cdot \vec{u_j}}$$

and $\vec{z} = \vec{y} - \hat{y}$.

Let
$$\vec{u_1} = \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix}$$
, $\vec{u_2} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Note that

 $\vec{u}_1 \cdot \vec{u}_2 = 0$. Let $W = \mathsf{Span}(\vec{u}_1, \vec{u}_2)$.

Find \hat{y} and \vec{z} so that $\vec{y} = \hat{y} + \vec{z}$, $\hat{y} \in W$ and $\vec{z} \in W^{\perp}$.

Let
$$\vec{u_1} = \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix}$$
, $\vec{u_2} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Note that

 $\vec{u}_1 \cdot \vec{u}_2 = 0$. Let $W = \mathsf{Span}(\vec{u}_1, \vec{u}_2)$.

Find \hat{y} and \vec{z} so that $\vec{y} = \hat{y} + \vec{z}$, $\hat{y} \in W$ and $\vec{z} \in W^{\perp}$.

NOTATION

 $\hat{y} = \mathsf{Proj}_{W}(\vec{y})$. is called the orthogonal projection of \vec{y} onto W.

Let
$$\vec{u_1} = \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix}$$
, $\vec{u_2} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Note that

 $\vec{u}_1 \cdot \vec{u}_2 = 0$. Let $W = \text{Span}(\vec{u}_1, \vec{u}_2)$.

Find \hat{y} and \vec{z} so that $\vec{y} = \hat{y} + \vec{z}$, $\hat{y} \in W$ and $\vec{z} \in W^{\perp}$.

NOTATION

 $\hat{y} = \text{Proj}_{W}(\vec{y})$. is called the orthogonal projection of \vec{y} onto W.

THEOREM (BEST APPROXIMATION THEOREM)

Let W be a subspace of \mathbb{R}^n , $\vec{y} \in \mathbb{R}^n$ and $\hat{y} = Proj_W(\vec{y})$. Then \hat{y} is the closest point in W to \vec{y} .

Let
$$\vec{u_1} = \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix}$$
, $\vec{u_2} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Note that

 $\vec{u}_1 \cdot \vec{u}_2 = 0$. Let $W = \text{Span}(\vec{u}_1, \vec{u}_2)$.

Find \hat{y} and \vec{z} so that $\vec{y} = \hat{y} + \vec{z}$, $\hat{y} \in W$ and $\vec{z} \in W^{\perp}$.

NOTATION

 $\hat{y} = \text{Proj}_{W}(\vec{y})$. is called the orthogonal projection of \vec{y} onto W.

THEOREM (BEST APPROXIMATION THEOREM)

Let W be a subspace of \mathbb{R}^n , $\vec{y} \in \mathbb{R}^n$ and $\hat{y} = Proj_W(\vec{y})$. Then \hat{y} is the closest point in W to \vec{y} . That is, for every $\vec{v} \in W$, if $\vec{v} \neq \hat{y}$ then

$$\|\vec{y} - \hat{y}\| < \|\vec{y} - \vec{v}\|.$$

Take $\vec{v} \in W$ with $\vec{v} \neq \hat{y}$.

Take $\vec{v} \in W$ with $\vec{v} \neq \hat{y}$.

Since $\vec{v}, \hat{y} \in W$, we have $\vec{0} \neq (\hat{y} - \vec{v}) \in W$.

Take $\vec{v} \in W$ with $\vec{v} \neq \hat{y}$.

Since $\vec{v}, \hat{y} \in W$, we have $\vec{0} \neq (\hat{y} - \vec{v}) \in W$.

Since $\vec{y} - \hat{y}$ is in W^{\perp} , $(\vec{y} - \hat{y}) \cdot (\hat{y} - \vec{v}) = 0$.

Take $\vec{v} \in W$ with $\vec{v} \neq \hat{y}$.

Since $\vec{v}, \hat{y} \in W$, we have $\vec{0} \neq (\hat{y} - \vec{v}) \in W$.

Since $\vec{y} - \hat{y}$ is in W^{\perp} , $(\vec{y} - \hat{y}) \cdot (\hat{y} - \vec{v}) = 0$.

Now, $\vec{y}-\vec{v}=(\vec{y}-\hat{y})+(\hat{y}-\vec{v})$, and so

Take $\vec{v} \in W$ with $\vec{v} \neq \hat{y}$.

Since $\vec{v}, \hat{y} \in W$, we have $\vec{0} \neq (\hat{y} - \vec{v}) \in W$.

Since $\vec{y} - \hat{y}$ is in W^{\perp} , $(\vec{y} - \hat{y}) \cdot (\hat{y} - \vec{v}) = 0$.

Now, $\vec{y} - \vec{v} = (\vec{y} - \hat{y}) + (\hat{y} - \vec{v})$, and so the Pythagorean theorem implies

$$\|\vec{y} - \vec{v}\|^2 = \|\vec{y} - \hat{y}\|^2 + \|\hat{y} - \vec{v}\|^2 > \|\vec{y} - \hat{y}\|^2.$$

Take $\vec{v} \in W$ with $\vec{v} \neq \hat{y}$.

Since $\vec{v}, \hat{y} \in W$, we have $\vec{0} \neq (\hat{y} - \vec{v}) \in W$.

Since $\vec{y} - \hat{y}$ is in W^{\perp} , $(\vec{y} - \hat{y}) \cdot (\hat{y} - \vec{v}) = 0$.

Now, $\vec{y} - \vec{v} = (\vec{y} - \hat{y}) + (\hat{y} - \vec{v})$, and so the Pythagorean theorem implies

$$\|\vec{y} - \vec{v}\|^2 = \|\vec{y} - \hat{y}\|^2 + \|\hat{y} - \vec{v}\|^2 > \|\vec{y} - \hat{y}\|^2.$$

Note

We define the distance from \vec{y} to a subspace W by

$$dist(\vec{y}, W) = dist(\vec{y}, Proj_W(\vec{y})).$$

Let
$$\vec{u}_1 = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}$$
, $\vec{u}_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} -1 \\ -5 \\ 10 \end{pmatrix}$, $W = \operatorname{Span}(\vec{u}_1, \vec{u}_2)$. Compute $\operatorname{dist}(\vec{y}, W)$.

Let
$$\vec{u}_1 = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}$$
, $\vec{u}_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} -1 \\ -5 \\ 10 \end{pmatrix}$, $W = \operatorname{Span}(\vec{u}_1, \vec{u}_2)$. Compute $\operatorname{dist}(\vec{y}, W)$.

THEOREM

If $\{\vec{u}_1, \dots, \vec{u}_p\}$ is an orthonormal basis for W, then

$$Proj_W(\vec{y}) = (\vec{y} \cdot \vec{u_1})\vec{u_1} + (\vec{y} \cdot \vec{u_2})\vec{u_2} + \dots (\vec{y} \cdot \vec{u_p})\vec{u_p}.$$

Furthermore, if $U = [\vec{u_1} \ \vec{u_2} \ \dots \ \vec{u_p}]$ then for every $\vec{y} \in \mathbb{R}^n$,

$$Proj_{W}(\vec{y}) = UU^{T}\vec{y}$$

