MTHSC 3110 Section 6.4 – The Gram-Schmidt Process

Kevin James

Kevin James MTHSC 3110 Section 6.4 – The Gram-Schmidt Process

向下 イヨト イヨト

OVERVIEW

The Gram-Schmidt algorithm constructs an orthogonal or orthonormal basis for any subspace $\{\vec{0}\} \neq W \leq \mathbb{R}^n$ starting with any basis for W.

(A) (E) (A) (E) (A)

OVERVIEW

The Gram-Schmidt algorithm constructs an orthogonal or orthonormal basis for any subspace $\{\vec{0}\} \neq W \leq \mathbb{R}^n$ starting with any basis for W.

EXAMPLE

Let
$$W = \text{Span}(\vec{x_1}, \vec{x_2})$$
 where $\vec{x_1} = \begin{pmatrix} 3 \\ 6 \\ 0 \end{pmatrix}$ and $\vec{x_2} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$. Find an orthogonal basis for W .

・日・ ・ ヨ・ ・ ヨ・

OVERVIEW

The Gram-Schmidt algorithm constructs an orthogonal or orthonormal basis for any subspace $\{\vec{0}\} \neq W \leq \mathbb{R}^n$ starting with any basis for W.

EXAMPLE

Let
$$W = \text{Span}(\vec{x_1}, \vec{x_2})$$
 where $\vec{x_1} = \begin{pmatrix} 3 \\ 6 \\ 0 \end{pmatrix}$ and $\vec{x_2} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$. Find an orthogonal basis for W .
Now find an orthonormal basis for W .

・日・ ・ ヨ・ ・ ヨ・

EXAMPLE

Let
$$W = \text{Span}(\vec{x_1}, \vec{x_2}, \vec{x_3})$$
 where $\vec{x_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\vec{x_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ and
 $\vec{x_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$. Clearly the vectors are linearly independent, so W is
a three-dimensional subspace of \mathbb{R}^4 . Find an orthogonal basis for
 W .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ = 三 つへぐ

EXAMPLE

Let
$$W = \text{Span}(\vec{x_1}, \vec{x_2}, \vec{x_3})$$
 where $\vec{x_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\vec{x_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ and
 $\vec{x_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$. Clearly the vectors are linearly independent, so W is
a three-dimensional subspace of \mathbb{R}^4 . Find an orthogonal basis for

W.

Now find an orthonormal basis for W.

ヘロア 人間 アメヨア 人間 アー

Э

Theorem

Suppose $W \leq \mathbb{R}^n$ has a basis $\{\vec{x_1}, \vec{x_2}, \dots, \vec{x_p}\}$. Then,

$$\vec{v}_{1} = \vec{x}_{1}$$

$$\vec{v}_{2} = \vec{x}_{2} - \frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}$$

$$\vec{v}_{3} = \vec{x}_{3} - \frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} - \frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}$$

$$\vdots$$

$$\vec{v}_{p} = \vec{x}_{p} - \frac{\vec{x}_{p} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} - \dots - \frac{\vec{x}_{p} \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}$$

is an orthogonal basis for W.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

3

Theorem

Suppose $W \leq \mathbb{R}^n$ has a basis $\{\vec{x_1}, \vec{x_2}, \dots, \vec{x_p}\}$. Then,

$$\vec{v}_{1} = \vec{x}_{1}$$

$$\vec{v}_{2} = \vec{x}_{2} - \frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}$$

$$\vec{v}_{3} = \vec{x}_{3} - \frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} - \frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}$$

$$\vdots$$

$$\vec{v}_{p} = \vec{x}_{p} - \frac{\vec{x}_{p} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} - \dots - \frac{\vec{x}_{p} \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}$$

is an orthogonal basis for W. Also,

$$Span(\vec{v}_1,\ldots,\vec{v}_k) = Span(\vec{x}_1,\ldots,\vec{x}_k)$$

for $1 \leq k \leq p$.

イロン 不良 とくほどう

3

THEOREM (QR FACTORIZATION)

Suppose that A is a $m \times n$ matrix with linearly independent columns. Then there exist matrices Q and R so that

- 1 A = QR.
- Q is m × n and the columns of Q form an orthonormal basis for Col(A), the column space of A.
- **3** *R* is an upper triangular, square matrix with positive entries on the diagonal.

.

THEOREM (QR FACTORIZATION)

Suppose that A is a $m \times n$ matrix with linearly independent columns. Then there exist matrices Q and R so that

- $\bullet A = QR.$
- Q is m × n and the columns of Q form an orthonormal basis for Col(A), the column space of A.
- **3** *R* is an upper triangular, square matrix with positive entries on the diagonal.

PROOF SKETCH

The columns of A are linearly independent, so they form a basis for Col(A). Convert them to an orthonormal basis via the Gram Schmidt algorithm. Check that A = QR with Q and R as claimed follows from the way we construct the orthonormal basis.

(4月) キョン キョン