MTHSC 3110 Section 6.5 – Least Squares Solutions

Kevin James

DEFINITION

Suppose that A is an $m \times n$ matrix. A <u>least squares solution</u> of the matrix equation $A\vec{x} = \vec{b}$ is a vector $\hat{x} \in \mathbb{R}^n$ satisfying

$$||\vec{b} - A\hat{x}|| \leq ||\vec{b} - A\vec{x}||$$

for all $\vec{x} \in \mathbb{R}^n$.

EXAMPLE

Find a least squares solution to $A\vec{x} = \vec{b}$ where

$$A = \begin{pmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{pmatrix}. \text{ and } \vec{b} = \begin{pmatrix} -1 \\ 2 \\ 1 \\ 6 \end{pmatrix}.$$

SOLUTION

Note that the columns of A are orthogonal and thus give an orthogonal basis for Col(A).

We can compute

$$\hat{b} = \operatorname{Proj}_{\operatorname{Col}(A)}(\vec{b}) = \frac{\vec{b} \cdot \vec{a_1}}{\vec{a_1} \cdot \vec{a_1}} \vec{a_1} + \frac{\vec{b} \cdot \vec{a_2}}{\vec{a_2} \cdot \vec{a_2}} \vec{a_2}$$

$$= \frac{8}{4} \vec{a_1} + \frac{45}{90} \vec{a_2} = 2\vec{a_1} + \frac{1}{2} \vec{a_2} = \begin{pmatrix} -1\\1\\\frac{3}{2}\\\frac{11}{2} \end{pmatrix}.$$

Since $\hat{b} = \operatorname{Proj}_{\operatorname{Col}(A)}(\vec{b})$, it is the closest vector to \vec{b} in $\operatorname{Col}(A)$. Since $\hat{b} \in \operatorname{Col}(A)$ there is a solution to $A\hat{x} = \hat{b}$.

From our previous work, a solution is given by $\hat{x} = \begin{pmatrix} 2 \\ \frac{1}{2} \end{pmatrix}$.

THEOREM

The set of least squares solutions to $A\vec{x} = \vec{b}$ is the nonempty set of solutions of

$$(A^T A)\vec{x} = A^T \vec{b}.$$

PROOF.

Write $A = [\vec{a}_1, \dots, \vec{a}_n]$. Take $\hat{b} = \text{Proj}_{Col(A)}(\vec{b})$.

Then \hat{b} is the closest vector to \vec{b} for which $A\vec{x} = \hat{b}$ has a solution.

Since $\hat{b} \in Col(A)$, there is $\hat{x} \in \mathbb{R}^n$ with $A\hat{x} = \hat{b}$.

Now, note that

$$(\vec{b} - \hat{b}) \perp \mathsf{Col}(A) \iff (\vec{b} - A\hat{x}) \perp \vec{a_i} \text{ for } 1 \leq i \leq n.$$

$$\Leftrightarrow \vec{a_i}^T (\vec{b} - A\hat{x}) = 0 \text{ for } 1 \leq i \leq n.$$

$$\Leftrightarrow \vec{0} = A^T (\vec{b} - A\hat{x}) = A^T \vec{b} - A^T A\hat{x}.$$

$$\Leftrightarrow A^T A\hat{x} = A^T \vec{b}.$$

Theorem

The matrix A^TA is invertible if and only if the columns of A are linearly independent. In this case, the equation $A\vec{x} = \vec{b}$ has a unique least squares solution, and it is given by

$$\hat{x} = (A^T A)^{-1} A^T \vec{b}$$

THEOREM

Given an $m \times n$ matrix A with linearly independent columns, let A = QR be a QR-factorization of A. Then for each $\vec{b} \in \mathbb{R}^m$, the equation $A\vec{x} = \vec{b}$ has a unique least-squares solution, given by

$$\hat{x} = R^{-1} Q^T \vec{b}.$$

