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Definition

Suppose that A is an m × n matrix. A least squares solution of the

matrix equation A~x = ~b is a vector x̂ ∈ Rn satisfying

||~b − Ax̂ || ≤ ||~b − A~x ||

for all ~x ∈ Rn.
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Example

Find a least squares solution to A~x = ~b where

A =


1 −6
1 −2
1 1
1 7

. and ~b =


−1
2
1
6

.
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Solution

Note that the columns of A are orthogonal and thus give an
orthogonal basis for Col(A).

We can compute

b̂ = ProjCol(A)(
~b) =

~b · ~a1
~a1 · ~a1

~a1 +
~b · ~a2
~a2 · ~a2

~a2

=
8

4
~a1 +

45

90
~a2 = 2~a1 +

1

2
~a2 =


−1
1
3
2

11
2

 .

Since b̂ = ProjCol(A)(
~b), it is the closest vector to ~b in Col(A).

Since b̂ ∈ Col(A) there is a solution to Ax̂ = b̂.

From our previous work, a solution is given by x̂ =

(
2
1
2

)
.
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Theorem

The set of least squares solutions to A~x = ~b is the nonempty set of
solutions of

(ATA)~x = AT~b.

Proof.

Write A = [~a1, . . . , ~an].

Take b̂ = ProjCol(A)(
~b).

Then b̂ is the closest vector to ~b for which A~x = b̂ has a solution.
Since b̂ ∈ Col(A), there is x̂ ∈ Rn with Ax̂ = b̂.
Now, note that

(~b − b̂) ⊥ Col(A) ⇔ (~b − Ax̂) ⊥ ~ai for 1 ≤ i ≤ n.

⇔ ~aTi (
~b − Ax̂) = 0 for 1 ≤ i ≤ n.

⇔ ~0 = AT (~b − Ax̂) = AT~b − ATAx̂ .

⇔ ATAx̂ = AT~b.
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Theorem

The matrix ATA is invertible if and only if the columns of A are
linearly independent. In this case, the equation A~x = ~b has a
unique least squares solution, and it is given by

x̂ = (ATA)−1AT~b

Theorem

Given an m × n matrix A with linearly independent columns, let
A = QR be a QR-factorization of A. Then for each ~b ∈ Rm, the
equation A~x = ~b has a unique least-squares solution, given by

x̂ = R−1QT~b.
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