MTHS 3190 BINARY OPERATIONS

Kevin James

DEFINITION

A binary operation on a nonempty set A is a mapping f form $A \times A$ to A. That is $f \subseteq A \times A \times A$ and f has the property that for each $(a, b) \in A \times A$, there is precisely one $c \in A$ such that $(a, b, c) \in f$.

NOTATION

If f is a binary operation on A and if $(a, b, c) \in f$ then we have already seen the notation f(a, b) = c. For binary operations, it is customary to write instead

$$a f b = c,$$

or perhaps

$$a * b = c.$$

EXAMPLE

Some binary operations on $\ensuremath{\mathbb{Z}}$ are

- 1 x * y = x + y
- 2 x * y = x y
- 3 x * y = xy
- 4 x * y = x + 2y + 3
- **5** x * y = 1 + xy

Commutativity and Associativity

DEFINITION

Suppose that * is a binary operation of a nonempty set A.

- * is *commutative* if a * b = b * a for all $a, b \in A$.
- * is associative if (a * b) * c = a * (b * c).

EXAMPLE

- Multiplication and addition give operators on ℤ which are both commutative and associative.
- 2 Subtraction is an operation on ℤ which is neither commutative nor associative.
- B The binary operation on Z given by x * y = 1 + xy is commutative but not associative. For example (1 * 2) * 3 = 3 * 3 = 10 while 1 * (2 * 3) = 1 * (7) = 8.

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that $B \subseteq A$. If it is true that $a * b \in B$ for all $a, b \in B$, then we say that B is closed under *.

EXAMPLE

Consider addition on $\ensuremath{\mathbb{Z}}$. The set of even integers is closed under addition.

Proof.

Suppose that $a, b \in \mathbb{Z}$ are even.

Then there are $x, y \in \mathbb{Z}$ such that a = 2x and b = 2y.

Thus a + b = 2x + 2y = 2(x + y) which is even.

Since a and b were arbitrary even integers, it follows that the set of even integers is closed under addition.

IDENTITY ELEMENT

Definition

Let * be a binary operation on a nonempty set A. An element e is called an identity element with respect to * if

$$e * x = x = x * e$$

for all $x \in A$.

EXAMPLE

- **1** is an identity element for multiplication on the integers.
- **2** 0 is an identity element for addition on the integers.
- **3** If * is defined on \mathbb{Z} by x * y = x + y + 1 Then <u>-1</u> is the identity.
- Output The operation * defined on Z by x * y = 1 + xy has no identity element.

RIGHT, LEFT AND TWO-SIDED INVERSES

DEFINITION

Suppose that * is a binary operation on a nonempty set A and that e is an identity element with respect to *. Suppose that $a \in A$.

- If there exists b ∈ A such that a * b = e then b is called a right inverse of a with respect to *.
- If there exists b ∈ A such that b * a = e then b is called a *left* inverse of a with respect to *.
- If b ∈ A is both a right and left inverse of a with respect to * then we simply say that b is an *inverse* of a and we say that a is *invertible*.

EXAMPLE

- **1** Consider the operation of addition on the integers. For any integer *a*, the inverse of *a* with respect to addition is -a.
- **2** Consider the operation of multiplication on \mathbb{Z} . The invertible elements are $\underline{1}$ and $\underline{-1}$.

Fact

Suppose that * is a binary operation on a nonempty set A. If there is an identity element with respect to * then it is unique. In the case that there is an identity element and that * is associative then for each $a \in A$ if there is an inverse of a then it is unique.