True Statements in Mathematics

MTHSC 3190 Section 1.3

Kevin James

Kevin James MTHSC 3190 Section 1.3

If-Then Statements If-and-only-if statements Other Mathematical Words

Definition

A <u>theorem</u> is a declarative statement which is known to always be true without exception and which has a proof (mathematically acceptable explanation).

EXAMPLES

NON-THEOREM It is raining.

NON-THEOREM In July, Clemson is hot.

NON-THEOREM When an object is dropped near the earth, it accelerates at a rate of 9.8 m/s^2 .

THEOREM (*Pythagoras*) If a and b are the lengths os the legs of a right triangle and if c is the length of the hypotenuse, then

$$a^2 + b^2 = c^2.$$

Note

Many theorems in mathematics can be expressed in the form:

If A then B.

where A and B are themselves declarative statements

EXAMPLE

Express the fact that the sum of two even integers is again even as an *if-then* statement.

TRUTH OF IF-THEN STATEMENTS

Consider the truth of the following statements as *English* statements and as *Mathematics* statements

- 1 If you don't finish your dinner then you will get no dessert.
- 2 If you clean your room, then I will give you \$ 10.

Note

When speaking English, we sometimes hear or even intend two cause and effect statements in an *if-then* statement. However, in Mathematics, an *if-then* statement only expresses one such statement.

TRUTH OF IF-THEN STATEMENTS

The truth value in all instances of the statement $\underline{If A \text{ then } B}$ is given by the following table.

Α	В	If A then B
false	false	true
false	true	true
true	false	false
true	true	true

NOTATION

The following are notation for expressing If A then B.

- 1 A implies B
- \bigcirc B is implied by A
- 3 B, if A
- $\mathbf{4}$ A is sufficient for B.
- $\mathbf{6}$ A is a sufficient condition for B
- **6** In order for B to hold, it is enough that we have A.
- B is necessary for A. In order for A to be true, B must also be true (but it is possible that B is true and A is not true).
- $(\mathbf{8})$ A, only if B.
- **9** $A \Rightarrow B$. The symbol \Rightarrow is read as implies.
- $\textcircled{0} B \leftarrow A.$ The symbol \leftarrow is read as implied by.

IF-AND-ONLY-IF STATEMENTS

In mathematics the statement $\underline{A \text{ if and only if } B}$ means both of the following

- If A then B.
- \bigcirc If B then A.

EXAMPLE

What two things are meant by "An integer x is even if and only if the integer x + 1 is odd." ?

THE TRUTH OF *If-and-only-if statements*

The truth value in all instances of the statement A if and only if B is given by the following table

A	В	A if and only if B
false	false	true
false	true	false
true	false	false
true	true	true

Note

Note that the statement <u>A if and only if B</u> is true precisely when A and B have the same truth value. Thus we say that A if and only if B is true when A and B are logically equivalent.

AND, OR AND NOT

The mathematical use of the words \underline{And} , \underline{Or} and \underline{Not} is given by the following tables.

A	В	A and B
false	false	false
false	true	false
true	false	false
true	true	true

A	В	A or B
false	false	false
false	true	true
true	false	true
true	true	true

A	Not A
false	true
true	false

True statements

Other words used to denote true declarative statements are: *Result, Fact, Proposition, Lemma, Corollary, Claim.*

VACUOUS TRUTH

Statements of the form $\underline{\text{If } A \text{ then } B}$ for which A can never be true are said to be vacuously true.

Example

The statement

If x is both a perfect square and a prime, then it is negative is

vacuously true.