MTHSC 3190 Section 1.6 Boolean Algebra

Kevin James

Kevin James MTHSC 3190 Section 1.6 Boolean Algebra

BOOLEAN OPERATORS

The Boolean operators \land , \lor and \neg referred to as <u>And</u>, <u>Or</u> and <u>Not</u> are defined by the following truth tables.

A	В	$A \wedge B$	$A \lor B$
F	F	F	F
F	Т	F	Т
Т	F	F	Т
Т	Т	Т	Т

EXAMPLE

Calculate the value of

$$((\neg \mathsf{False}) \lor (\neg \mathsf{True})) \land \mathsf{True}.$$

DEFINITION

Two boolean expressions are logically equivalent provided the have the same truth-values for all possible instances of their variables.

PROPOSITION

$$\neg(x \land y) = (\neg x) \lor (\neg y).$$

Proof.

Exercise

PROOF TEMPLATE FOR BOOLEAN EXPRESSIONS

To show the equivalence of two boolean expressions:

- First, we write a sentence of explanation such as "In order to compare the above boolean expressions in all possible instances of their variable set, we construct the following truth table.
- **2** Construct a table showing the values of the two statements for all possible instances of their variable sets. (If the statements have n variables, you will need 2^n rows).
- 8 Check that the two expressions always agree or note that they fail to agree.
- Write a sentence stating that the expressions always agree or note that you have disproved the equivalence and point out the counterexample.

Theorem (6.2)

1
$$x \land y = y \land x; x \lor y = y \lor x.$$

2 $(x \land y) \land z = x \land (y \land z); (x \lor y) \lor z = x \lor (y \lor z).$
3 $x \land (True) = x; x \lor False = x.$
4 $\neg (\neg x) = x.$
5 $x \land x = x; x \lor x = x.$
6 $x \land (y \lor z) = (x \land y) \lor (x \land z); x \lor (y \land z) = (x \lor y) \land (x \lor z).$
7 $x \land (\neg x) = False; x \lor (\neg x) = True.$
8 $\neg (x \land y) = \neg x \lor \neg y; \neg (x \lor y) = \neg x \land \neg y.$

Proof.

Exercise

IMPLICATION OPERATORS

The operators \rightarrow and \leftrightarrow are defined by

A	В	$A \rightarrow B$	$A \leftrightarrow B$
F	F	Т	Т
F	Т	Т	F
Т	F	F	F
Т	Т	Т	Т

PROPOSITION

$$1 x \to y = \neg x \lor y.$$

$$2 x \to y = \neg y \to \neg x.$$

Proof.

Exercise