MTHSC 3190 SECTION 1.6 BOOLEAN ALGEBRA

Kevin James

BOOLEAN OPERATORS

The Boolean operators \land , \lor and \neg referred to as <u>And</u>, <u>Or</u> and <u>Not</u> are defined by the following truth tables.

Α	В	$A \wedge B$	$A \lor B$
F	F	F	F
F	Т	F	Т
Т	F	F	Т
Т	Т	Т	Т

Α	$\neg A$
F	Т
Т	F

EXAMPLE

Calculate the value of

 $((\neg \mathsf{False}) \lor (\neg \mathsf{True})) \land \mathsf{True}.$

DEFINITION

Two boolean expressions are <u>logically equivalent</u> provided the have the same truth-values for all possible instances of their variables.

DEFINITION

Two boolean expressions are <u>logically equivalent</u> provided the have the same truth-values for all possible instances of their variables.

Proposition

$$\neg(x \land y) = (\neg x) \lor (\neg y).$$

Proof.

Exercise

PROOF TEMPLATE FOR BOOLEAN EXPRESSIONS

To show the equivalence of two boolean expressions:

- First, we write a sentence of explanation such as "In order to compare the above boolean expressions in all possible instances of their variable set, we construct the following truth table.
- 2 Construct a table showing the values of the two statements for all possible instances of their variable sets. (If the statements have n variables, you will need 2^n rows).
- **3** Check that the two expressions always agree or note that they fail to agree.
- Write a sentence stating that the expressions always agree or note that you have disproved the equivalence and point out the counterexample.

Theorem (6.2)

- **3** $x \land (True) = x$; $x \lor False = x$.

- $(\neg x) = False;$ $x \lor (\neg x) = True.$

Proof.

Exercise

IMPLICATION OPERATORS

The operators \rightarrow and \leftrightarrow are defined by

Α	В	$A \rightarrow B$	$A \leftrightarrow B$
F	F	Т	Т
F	Т	Т	F
Т	F	F	F
Т	Т	Т	Т

Proposition

$$2 x \rightarrow y = \neg y \rightarrow \neg x.$$

Proof.

Exercise

