MTHSC 3190 Section 2.9 Sets –A first Look

Kevin James

Kevin James MTHSC 3190 Section 2.9 Sets –a first look

Definition

A \underline{set} is a repetition free unordered collection of objects called elements.

NOTATION

If an object x is in a set S then we write $x \in S$ (read x is in S). Otherwise, we write $x \notin S$.

Example

1 {1,2,3}, {1,5,7}, {
$$A, B, 2, \gamma, \mathbb{Z}$$
} are sets.

2 Let
$$S = \{1, 2, 3\}$$
. Then $1 \in S$, $2 \in S$ but $5 \notin S$.

3 $\emptyset = \{\}$ is the empty set.

Note

Given and object x and a set S, either $x \in S$ or $x \notin S$. There is no concept of x being in S multiple times. For example, $S = \{1, 2, 1\}$ is a set of size 2.

DEFINITION

If A is a set, then the number |A| of elements in A is the cardinality of A. This is also denoted #A.

Set Notation

We typically define sets using set notation which looks like:

$$S = \begin{cases} \text{variable including type of } : \text{ condition list} \\ \text{allowable objects (-e.g.} \\ \text{integers)} \end{cases}$$

This notation means all instances of the variables which satisfy the condition list are in the set S. That is, the condition list is a membership test.

EXAMPLE

- **1** $\mathcal{E} = \{x \in \mathbb{Z} : 2|x\}$ denotes the set of even integers.
- *NE* = {x ∈ Z : 2 ∤ x} denotes the set of integers which are not even. (One might expect that this is the same as the set of odd integers, but we have not yet proved this).
- **3** $\mathcal{O} = \{x \in \mathbb{Z} : x = 2k + 1 \text{ for some } k \in \mathbb{Z}\}$ denotes the set of odd integers.

Set Equality

Two sets S and T are equal provided that for all (reasonable objects) $x, x \in S \Leftrightarrow x \in T$.

Subset

Given two sets S and T, we say that S is a <u>subset</u> of T provided that $x \in S \Rightarrow x \in T$. In this case, we may write $S \subseteq T$.

EXAMPLE

Suppose that

$$S = \{1,3,5,7\} \qquad T = \{2,4,6,8\}$$
$$R = \{1,2,3,4,5,6,7,8\} \qquad W = \{z \in \mathbb{Z} : 1 \le z \le 8\}$$

Which of these sets are equal or subsets?

Note

If $S = \{x, y, z\}$ then we can write $x \in S$ or $\{x\} \subset S$.

PROOF TEMPLATE FOR SUBSET

Given two sets A and B we show $A \subseteq B$ as follows.

- First choose an arbitrary (undetermined) element x ∈ A. We indicate this with a statement like "Let x ∈ A".
- We conclude the proof by deducing that x ∈ B and note that this implies that A ⊆ B. We indicate this with statements like "Therefore, x ∈ B. Thus A ⊆ B.
- **8** Expand from the definition of A what it means to be in A.
- Expand from the bottom by explaining what it means to be in B.
- 6 Connect the two ends.

EXAMPLE

Let $S = \{x \in \mathbb{Z} : 5|x\}$ and $T = \{x \in \mathbb{Z} : 50|x\}$. Show that $T \subseteq S$.

PROPOSITION

Let A be a set. Then $x \in A \Leftrightarrow \{x\} \subseteq A$.

Proof.

Exercise

PROOF TEMPLATE FOR SET EQUALITY

Let A and B be sets. To show that A = B we must show that

 $A \subseteq B,$ $B \subset A.$

PROPOSITION

Let
$$E = \{x \in \mathbb{Z} : x \text{ is even}\}$$
 and
 $F = \{z \in \mathbb{Z} : z = a + b \text{ where } a, b \text{ are odd}\}$. Then $E = F$.

PROOF. Exercise

DEFINITION (PYTHAGOREAN TRIPLE)

A list of 3 integers (a, b, c) is called a Pythagorean triple provided that $a^2 + b^2 = c^2$.

EXAMPLE

(3, 4, 5) and (5, 12, 13) are Pythagorean triples

PROPOSITION

Let P denote the set of all Pythagorean triples (-i.e. $P = \{(a, b, c) : a, b, c \in \mathbb{Z}; a^2 + b^2 = c^2\}$). Let $T = \{(p, q, r) : p, q, r \in \mathbb{Z}; p = x^2 - y^2, q = 2xy \text{ and } r = x^2 + y^2 \text{ where } x, y, z \in \mathbb{Z}\}$. (We could also write $T = \{(x^2 - y^2, 2xy, x^2 + y^2) : x, y, z \in \mathbb{Z}\}$. Then $T \subseteq P$.

PROOF. Exercise.

Example

Let $A = \{1, 2, 3\}$. List the subsets of A.

Size of subsets	Subsets	Number of subsets of this size
0	Ø	1
1	{1}, {2}, {3}	3
2	$\{1,2\},\ \{1,3\},\ \{2,3\}$	3
3	$\{1, 2, 3\}$	1
	Total =	8

Theorem

Let A be a finite set. The number of subsets of A is $2^{|A|}$.

DEFINITION (POWER SET)

Let A be a set. The power set of A is denoted 2^A and is defined to be the set of all subsets of A.

EXAMPLE

Let $A = \{1, 2\}$. Then

$$2^{\mathcal{A}} = \{ \emptyset, \{1\}, \{2\}, \{1, 2\} \}.$$

Note

In our example $\{1\} \in 2^A$ and $\{\{1\}\} \subseteq 2^A$.

COROLLARY

If A is a finite set, then $|2^A| = 2^{|A|}$.