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Definition (Existential Quantifiers and Statements)

An existential statement asserts the existence of an object of some
type with certain specified properties. Such a statement typically is
preceded with an existential quantifier such as “there exists” or
“there is”.

Example

There is an integer x that is divisible by 2.

General Form

There is x ∈ A such that P.

Notation

The existential quantifiers there is or there exists are sometimes
replaced with the notation ∃.
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Proof Template for Existence

To prove the statement “∃x ∈ A such that P”, we simply need to
find an example of an element of A which satisfies P. Our proof
will be constructed as follows.

1 Select a value for the variable x by stating “Let x = .”

2 Verify that x satisfies the claimed properties P.

3 Close the proof with “Therefore x = satisfies P as
claimed”.

Example

Show that there is x ∈ Z such that 2|x .
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Definition (Universal Quantifiers and Statements)

A universal statement asserts that a certain property is satisfied by
all members of a certain set (or universe). Universal statements are
typically preceded by a universal quantifier such as “for all”,
“every”, “all”, “each”, . . . .

Example

1 Every integer is either even or odd.

2 All integers are . . . .

3 Each integer is . . . .

4 Let x ∈ Z, then . . . .

Notation

The symbol ∀ read “for all” is often used as to denote the
universal quantifier
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General Form

The general form of a statement with a universal quantifier is
∀x ∈ A, S(x),

where S(x) is a statement about x .

Example

∀x ∈ Z, x is even or x is odd.

Proof template for Universal statements

To prove the statement “∀x ∈ A, S(x)” we proceed as follows

1 Start the proof by establishing notation for an arbitrary
element of A with a statement like “Let x ∈ A” or “Suppose
x ∈ A.”

2 Prove the statement S(x) about x using an appropriate proof
template.
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Negation of universal and existential statements

• ¬(∃x ∈ A such that P(x)) = ∀x ∈ A,¬P(x).

• ¬(∀x ∈ A,S(x)) = ∃x ∈ A such that ¬S(x).

Example

1 Express the statement “There is no integer that is both even
and odd.” using quantifiers.

2 Express the statement “Not all integers are prime.” using
quantifiers.
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Consider the following statements. Are they true?

1 ∀x ∈ R,∃y ∈ R such that xy = 1.

2 ∃y ∈ R such that ∀x ∈ R, xy = 1.
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