MTHSC 3190 Section 10 Quantifiers

Kevin James

An <u>existential statement</u> asserts the existence of an object of some type with certain specified properties. Such a statement typically is preceded with an <u>existential quantifier</u> such as "there exists" or "there is".

An <u>existential statement</u> asserts the existence of an object of some type with certain specified properties. Such a statement typically is preceded with an <u>existential quantifier</u> such as "there exists" or "there is".

EXAMPLE

There is an integer x that is divisible by 2.

An <u>existential statement</u> asserts the existence of an object of some type with certain specified properties. Such a statement typically is preceded with an <u>existential quantifier</u> such as "there exists" or "there is".

EXAMPLE

There is an integer x that is divisible by 2.

General Form

There is $x \in A$ such that P.

An <u>existential statement</u> asserts the existence of an object of some type with certain specified properties. Such a statement typically is preceded with an <u>existential quantifier</u> such as "there exists" or "there is".

EXAMPLE

There is an integer x that is divisible by 2.

General Form

There is $x \in A$ such that P.

NOTATION

The existential quantifiers <u>there is</u> or <u>there exists</u> are sometimes replaced with the notation \exists .

PROOF TEMPLATE FOR EXISTENCE

To prove the statement " $\exists x \in A \text{ such that } P$ ", we simply need to find an example of an element of A which satisfies P. Our proof will be constructed as follows.

- **1** Select a value for the variable x by stating "Let $x = \underline{\hspace{1cm}}$."
- 2 Verify that x satisfies the claimed properties P.
- **3** Close the proof with "Therefore $x = \underline{\hspace{1cm}}$ satisfies P as claimed".

PROOF TEMPLATE FOR EXISTENCE

To prove the statement " $\exists x \in A \text{ such that } P$ ", we simply need to find an example of an element of A which satisfies P. Our proof will be constructed as follows.

- **1** Select a value for the variable x by stating "Let x =_____."
- 2 Verify that x satisfies the claimed properties P.
- **3** Close the proof with "Therefore $x = \underline{\hspace{1cm}}$ satisfies P as claimed".

EXAMPLE

Show that there is $x \in \mathbb{Z}$ such that 2|x.

DEFINITION (UNIVERSAL QUANTIFIERS AND STATEMENTS)

A <u>universal statement</u> asserts that a certain property is satisfied by all members of a certain set (or universe). Universal statements are typically preceded by a <u>universal quantifier</u> such as "for all", "every", "all", "each",

DEFINITION (UNIVERSAL QUANTIFIERS AND STATEMENTS)

A <u>universal statement</u> asserts that a certain property is satisfied by all members of a certain set (or universe). Universal statements are typically preceded by a <u>universal quantifier</u> such as "for all", "every", "all", "each",

EXAMPLE

- 1 Every integer is either even or odd.
- 2 All integers are
- 3 Each integer is
- **1** Let $x ∈ \mathbb{Z}$, then

DEFINITION (UNIVERSAL QUANTIFIERS AND STATEMENTS)

A <u>universal statement</u> asserts that a certain property is satisfied by all members of a certain set (or universe). Universal statements are typically preceded by a <u>universal quantifier</u> such as "for all", "every", "all", "each",

EXAMPLE

- 1 Every integer is either even or odd.
- 2 All integers are
- 3 Each integer is
- 4 Let $x \in \mathbb{Z}$, then

NOTATION

The symbol \forall read "for all" is often used as to denote the universal quantifier

GENERAL FORM

The general form of a statement with a universal quantifier is $\forall x \in A, S(x),$

where S(x) is a statement about x.

GENERAL FORM

The general form of a statement with a universal quantifier is $\forall x \in A, S(x),$

where S(x) is a statement about x.

EXAMPLE

 $\forall x \in \mathbb{Z}$, x is even or x is odd.

GENERAL FORM

The general form of a statement with a universal quantifier is $\forall x \in A, S(x),$

where S(x) is a statement about x.

EXAMPLE

 $\forall x \in \mathbb{Z}$, x is even or x is odd.

Proof template for Universal Statements

To prove the statement " $\forall x \in A$, S(x)" we proceed as follows

- Start the proof by establishing notation for an arbitrary element of A with a statement like "Let $x \in A$ " or "Suppose $x \in A$."
- 2 Prove the statement S(x) about x using an appropriate proof template.

NEGATION OF UNIVERSAL AND EXISTENTIAL STATEMENTS

- $\neg(\exists x \in A \text{ such that } P(x)) = \forall x \in A, \neg P(x).$
- $\neg(\forall x \in A, S(x)) = \exists x \in A \text{ such that } \neg S(x).$

NEGATION OF UNIVERSAL AND EXISTENTIAL STATEMENTS

- $\neg(\exists x \in A \text{ such that } P(x)) = \forall x \in A, \neg P(x).$
- $\neg(\forall x \in A, S(x)) = \exists x \in A \text{ such that } \neg S(x).$

EXAMPLE

- Express the statement "There is no integer that is both even and odd." using quantifiers.
- Express the statement "Not all integers are prime." using quantifiers.

Consider the following statements. Are they true?

- $\exists y \in \mathbb{R} \text{ such that } \forall x \in \mathbb{R}, xy = 1.$