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Name:Examples

Sequence Example: Compute limn→∞
n3+2n2+1

2n3 .

Solution: First, we must decide what the limit is. Let’s rewrite the expression

n3 + 2n2 + 1

2n3
=

1

2
+

1

n
+

1

2n3
.

Since all of the terms except the first one tend to zero as n gets large, we will guess
that the limit is 1

2
. Now, we must prove it.

Scratch Work: We will need to consider the difference of the nth term of our
sequence and the claimed limit which is

n3 + 2n2 + 1

2n3
− 1

2
=

1

n
+

1

2n3

and show that it is small. That is we need to solve

1

n
+

1

2n3
< ε

for n.
We will use a fairly common trick to do this. We will replace our expression with

a less complicated but slightly larger one and prove this new expression is smaller
than ε.
Note: For n ≥ 1, we have

1 ≤ n

⇒ 1

n
≤ 1

⇒ 1

n2
≤ 1

n

⇒ 1

n3
≤ 1

n2
.

Thus, we have 1
n3 ≤ 1

n2 ≤ 1
n

for all n ≥ 1. Since we are interested in large values of
n we may use these inequalities as follows.

n3 + 2n2 + 1

2n3
− 1

2
=

1

n
+

1

2n3
=

1

n
+

1

2
· 1

n3
≤ 1

n
+

1

2
· 1

n
=

3

2n
.

Now, 3
2n
< ε⇔ 3

2ε
< n.

So, we will take N =
⌈

3
2ε

⌉
+ 1.

Now, we are ready to reorganize this into a proof (basically by writing our scratch
work backwards). We will of course be sure to destroy our scratch work afterwards
to make ourselves appear much smarter.



2

Proof. Let ε > 0.
Take N =

⌈
3
2ε

⌉
+ 1.

Let n ≥ N .
Then we first note that n ≥ N ≥ 2. Thus, we have

1 < n

⇒ 1

n
< 1

⇒ 1

n2
<

1

n

⇒ 1

n3
<

1

n2
.

Also, n ≥ N > 3
2ε

which implies that ε > 3
2n

.
Thus, we have∣∣∣∣n3 + 2n2 + 1

2n3
− 1

2

∣∣∣∣ =

∣∣∣∣ 1n +
1

2n3

∣∣∣∣ ≤ 1

n
+

1

2n
=

3

2n
< ε.

Since ε and n ≥ N were arbitrary, we have shown that

lim
n→∞

n3 + 2n2 + 1

2n3
=

1

2
.

�
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Series Example: Compute
∑∞

n=0

(
11
13

)n
if it exists and prove your claims.

Solution: First we must determine if the series converges and to what if it does. We
will use our formula from class, namely

k∑
n=0

xn =
xk+1 − 1

x− 1
,

which is valid for x 6= 0, 1.
Taking x = 11

13
, we have

k∑
n=0

(
11

13

)n
=

(
11
13

)k+1 − 1
11
13
− 1

=
13

2

(
1−

(
11

13

)k+1
)

=
13

2
− 11

2
·
(

11

13

)k
.

Now we note that as k gets large this last expression gets closer to 13
2

. So, we guess
that

∞∑
n=0

(
11

13

)n
= lim

k→∞

[
k∑

n=0

(
11

13

)n]
= lim

k→∞

[
13

2
− 11

2
·
(

11

13

)k]
=

13

2
.

Now let’s prove it.
Scratch Work First, we do a little scratch work to figure out which N to choose

in our argument. We need to again consider the difference in the kth sequence term
(or partial sum) and our claimed limit and argue that it is small. That is we will
consider ∣∣∣∣∣

k∑
n=0

(
11

13

)n
− 13

2

∣∣∣∣∣ =

∣∣∣∣∣
(
11
13

)k+1 − 1
11
13
− 1

− 13

2

∣∣∣∣∣
=

∣∣∣∣∣13

2

(
1−

(
11

13

)k+1
)
− 13

2

∣∣∣∣∣
=

11

2
·
(

11

13

)k
Thus∣∣∣∣∣

k∑
n=0

(
11

13

)n
− 13

2

∣∣∣∣∣ < ε

⇔ 11

2
·
(

11

13

)k
< ε

⇔
(

11

13

)k
<

2ε

11

⇔ k log

(
11

13

)
< log

(
2ε

11

)
⇔ k >

log
(
2ε
11

)
log
(
11
13

) . (Note that log
(
11
13

)
< 0. So, our inequality changes.)
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So we will take N = Max

(
1,

⌈
log( 2ε

11)
log( 11

13)

⌉
+ 1

)
.

Now, we are ready to write up our proof.

Proof. Let ε > 0. Take N = Max

(
1,

⌈
log( 2ε

11)
log( 11

13)

⌉
+ 1

)
.

Let n ≥ N .

Then n ≥ N >
log( 2ε

11)
log( 11

13)
.

Thus, log
((

11
13

)n)
< log

(
2ε
11

)
,

which implies that
(
11
13

)n
< 2ε

11
.

Thus, 11
2
·
(
11
13

)n
< ε.

So, for n ≥ N , we have that∣∣∣∣∣
n∑

m=0

(
11

13

)m
− 13

2

∣∣∣∣∣ =

∣∣∣∣∣
(
11
13

)n+1 − 1
11
13
− 1

− 13

2

∣∣∣∣∣
=

∣∣∣∣∣13

2

(
1−

(
11

13

)n+1
)
− 13

2

∣∣∣∣∣
=

11

2
·
(

11

13

)n
< ε.

Thus we have shown that
∞∑
m=0

(
11

13

)m
= lim

n→∞

[
n∑

m=0

(
11

13

)m]
=

13

2

�


