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Sequences, Series and Limits

Sequences
Series
Infinite Limits
Existence of Limits
Cauchy Sequences (Optional)

Definition

We define a sequence to be an infinite list. We will usually denote
sequences as

(sn)n≥1 = (s1, s2, s3, . . . ).

Note

We will confine out attention to sequences of real numbers.
Although one can certainly consider much of our discussion in
other settings such as the complex numbers.
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Definition

We say that a sequence sn of real numbers converges to a limit
L ∈ R provided that

∀ε > 0,∃N ∈ Z, ∀n ≥ N, |sn − L| < ε.

Example

Let sn = 1
n .

Then, limn→∞ sn = 0.

Proof

Let ε > 0.
Take N =

⌈
1
ε

⌉
+ 1.

Suppose that n ≥ N.
Then n > 1

ε .
Thus |sn − 0| = 1

n < ε
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Exercise

Let sn = 3n2+2n+1
n2

. What is the limit? Prove it.
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Definition

For a sequence (an)n≥1 of real numbers we associate the series∑
n≥1

an

We also have the associated sequence of partial sums given by

Sk =
k∑

n=1

an

Definition

We say that the series
∑

n≥1 an converges to a limit L ∈ R
provided that its sequence of partial sums (Sn)n≥1 converges to L.
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Example

Consider the series
∑

n≥0
1
2n .

You may use the fact that for any 0 < x 6= 1,

n∑
k=0

xk =
xn+1 − 1

x − 1

which we will prove later by induction.
Show that the above series series converges to 2.
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Exercise

1 Compute
∑

n≥0
(
2
3

)n
.

2 Compute
∑

n≥0
(
1
9

)n
.

3 Compute
∑

n≥2
(
1
9

)n
.

4 Show that
∑

n≥0 (−1)n does not exist. Note that this will
involve negating the statement that the limit does exist which
involves 3 quantifiers. Be careful.
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Definition

1 We say that a sequence (sn)n≥1 increases without bound or
that it has limit ∞ and write

limn→∞[sn] =∞,

provided that

∀B > 0,∃N ∈ N, ∀n ≥ N, sn > B.

2 We say that a sequence (sn)n≥1 decreases without bound or
that it has limit −∞ and write

limn→∞[sn] = −∞,

provided that

∀B < 0,∃N ∈ N,∀n ≥ N, sn > B.
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Example

Compute the following limits and prove your answer.

1 limn→∞ n =∞.

2 limn→∞

(
1−2n2
n+1

)
= −∞.

3
∑

n≥1 1 =∞.

4
∑

n≥1
1
n =∞.
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Definition

Given a sequence (sn)n≥1 we say that the sequence has a limit or
that the limit of the sequence exists provided that

∃L,∀ε > 0,∃N ∈ Z, ∀n ≥ N, |sn − L| < ε.

Definition

Given a sequence (sn)n≥1 we say that the sequence has no limit or
that the limit of the sequence does not exist provided that

∀L,∃ε > 0,∀N ∈ Z,∃n ≥ N, |sn − L| ≥ ε.
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Example

Show that the following sequences have no limit.

1 sn = (−1)n.

2 sn = sin
(
2πn
100

)
.
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Definition

We call a sequence (sn)n≥1 of real numbers a Cauchy sequence if

∀ε > 0, ∃N ∈ Z,∀m, n > N, |sm − sn| < ε.

Exercise

1 Show that if a sequence converges then it is Cauchy.

2 Which of the sequences that we have considered are Cauchy?
Prove your assertions.
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Definition

We say that a series
∑

n≥1 an is a Cauchy Series if its sequence of
partial sums is a Cauchy sequence. Alternatively, this means that

∀ε > 0, ∃N ∈ Z, ∀n > m > N,

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε

Exercise

Which of the series considered before are Cauchy? Prove your
assertions.

Kevin James MTHSC 3190 Section 1.10 - Analysis Supplement



Sequences, Series and Limits

Sequences
Series
Infinite Limits
Existence of Limits
Cauchy Sequences (Optional)

Definition

We say that a series
∑

n≥1 an is a Cauchy Series if its sequence of
partial sums is a Cauchy sequence. Alternatively, this means that

∀ε > 0, ∃N ∈ Z, ∀n > m > N,

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε

Exercise

Which of the series considered before are Cauchy? Prove your
assertions.

Kevin James MTHSC 3190 Section 1.10 - Analysis Supplement


	Sequences, Series and Limits
	Sequences
	Series
	Infinite Limits
	Existence of Limits
	Cauchy Sequences (Optional) 


