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Set Operations

Union and Intersection
Counting
Difference and Symmetric Difference
Sets and Logic
Cartesian Product

Definition

Suppose that A and B are sets. Then we define the union denoted
by A∪B and intersection denoted by A∩B as

A∪B = {x : x ∈ A or x ∈ B},
A∩B = {x : x ∈ A and x ∈ B}.

Example

A = {a, b, c , d}, B = {c , d , e, f }
A∪B =
A∩B =
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Theorem

Let A,B and C be sets. Then,

1 A∪B = B ∪A; A∩B = B ∩A.

2 (A∪B)∪C = A∪ (B ∪C ); (A∩B)∩C = A∩ (B ∩C ).

3 A∪∅ = A; A∩∅ = ∅.
4 A∪ (B ∩C ) = (A∪B)∩ (A∪C ).

5 A∩ (B ∪C ) = (A∩B)∪ (A∩C ).

Proof

Make sure you can prove all of these. We will prove a couple now...
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Venn Diagrams

Note

Venn diagrams are very useful in visualizing set operations and
often lead us to discover true statements about sets and their
operations. However a sequence of Venn diagrams WILL NOT be
accepted as a proof.

Example

Draw the Venn diagrams which represent A,B,A∪B and A∩B.
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Inclusion/Exclusion – first case

Proposition

Suppose that A and B are sets. Then,

|A|+ |B| = |A∪B|+ |A∩B|.

Corollary (Inclusion/Exculusion)

|A∪B| = |A|+ |B| − |A∩B|.
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Combinatorial Proof

Proof

Let us label the elements of A∪B in the following 2 ways.

First, we will label each element of A with an A.
We then label each element of B with a B.
How many labels were used?

Answer 1

Answer 2

Thus A|+ |B| = Number of Labels = |A∪B|+ |A∩B|.
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Combinatorial Proof

Proof Template

A combinatorial proof is typically used to prove an identity of the
form

LHS = RHS .

We proceed as follows:

1 Pose a counting question.

2 Argue that the LHS answers the question.

3 Argue that the RHS answers the question.

4 Conclude that
LHS = Answer = RHS .
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Note

Finding the right question can be difficult. To get started ask
yourself what is being counted by the LHS or the RHS.

Inclusion/Exclusion Application

How many integers 1 ≤ x ≤ 1000 are divisible by 2 or 5?
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Definition

1 Let A and B be sets. We say that A and B are disjoint
provided that A∩B = ∅.

2 Let A1, . . . ,An be a collection of sets. This collection is said
to be pairwise disjoint provided that whenever i 6= j ,
Ai ∩Aj = ∅.

Example

Let A = {1, 2, 3},B = {4, 5, 6}, and C = {7, 8, 9}. Check that this
collection of 3 sets is pairwise disjoint.
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Corollary

Let A and B be disjoint sets. Then |A∪B| = |A|+ |B|.

Corollary

Suppose that A1, . . . ,An is a pairwise disjoint collection of sets.
Then,

|∪ni=1 Ai | =
n∑

i=1

|Ai |.
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Definition

Let A and B be sets.

1 We define their difference A \B as A \B = {x ∈ A : x 6∈ B}.
2 We define their symmetric difference AMB as

AMB = (A \ B)∪ (B \ A).

Note

The notation A− B is sometimes used in place of A \ B.

Example

Let A = {1, 2, 3, 4} and let B = {1, 4, 7, 9}.
Compute A \ B, B \ A, AMB and B MA.
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Example

Draw the Venn diagram for AMB. Is there another convenient
description/formula for this operator? Prove your formula.
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Advanced Example

Prove that A ⊆ B iff A ∩ B = A.”

Let A and B be sets. If and only if proof:
If A ⊆ B, then A ∩ B = A.

Assume A ⊆ B
Set equality proof:

Let x ∈ A ∩ B

.

.

.
Then x ∈ A.

Therefore, A ∩ B ⊆ A
Let x ∈ A

.

.

.
Then x ∈ A ∩ B

Therefore A ⊆ A ∩ B
Therefore A = A ∩ B

If A ∩ B = A, then A ⊆ B.
Assume A ∩ B = A

Subset proof:
Let x ∈ A

.

.

.
Then x ∈ B.

Therefore A ⊆ B
This completes the proof.
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Proposition

Let A, B, and C be sets. If A ⊆ B and B ⊆ C , then A ⊆ C .

Proof.

Let A, B, and C be sets such that A ⊆ B and B ⊆ C . We will
prove, by element chasing, that A ⊆ C . Suppose that x ∈ A. Since
x ∈ A and A ⊆ B, x ∈ B. Since x ∈ B and B ⊆ C , x ∈ C .
Therefore, x ∈ C and A ⊆ C .

Example

Now prove it using a truth table.
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Definition

Let A and B be sets. The Cartesian product A× B is defined as

A× B = {(a, b) : a ∈ A; b ∈ B}.

Example

Take A = {1, 2, 3} and B = {x , y}. What is A× B?

Proposition

Let A and B be finite sets. Then |A× B| = |A||B|.

Kevin James MTHSC 3190 Section 2.11



Set Operations

Union and Intersection
Counting
Difference and Symmetric Difference
Sets and Logic
Cartesian Product

Definition

Let A and B be sets. The Cartesian product A× B is defined as

A× B = {(a, b) : a ∈ A; b ∈ B}.

Example

Take A = {1, 2, 3} and B = {x , y}. What is A× B?

Proposition

Let A and B be finite sets. Then |A× B| = |A||B|.

Kevin James MTHSC 3190 Section 2.11



Set Operations

Union and Intersection
Counting
Difference and Symmetric Difference
Sets and Logic
Cartesian Product

Definition

Let A and B be sets. The Cartesian product A× B is defined as

A× B = {(a, b) : a ∈ A; b ∈ B}.

Example

Take A = {1, 2, 3} and B = {x , y}. What is A× B?

Proposition

Let A and B be finite sets. Then |A× B| = |A||B|.

Kevin James MTHSC 3190 Section 2.11


	Set Operations
	Union and Intersection
	Counting
	Difference and Symmetric Difference
	Sets and Logic
	Cartesian Product


