MTHSC 3190 Section 2.11

Kevin James

Kevin James MTHSC 3190 Section 2.11

・ロン ・回と ・ヨン ・ヨン

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

DEFINITION

Suppose that A and B are sets. Then we define the <u>union</u> denoted by $A \cup B$ and <u>intersection</u> denoted by $A \cap B$ as

$$A \cup B = \{x : x \in A \text{ or } x \in B\},\$$

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

・ロト ・回ト ・ヨト ・ヨト

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

DEFINITION

Suppose that A and B are sets. Then we define the <u>union</u> denoted by $A \cup B$ and <u>intersection</u> denoted by $A \cap B$ as

$$A \cup B = \{x : x \in A \text{ or } x \in B\},\$$

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

EXAMPLE

$$A = \{a, b, c, d\}, B = \{c, d, e, f\}$$

 $A \cup B = _$
 $A \cap B = _$

・ロト ・回ト ・ヨト ・ヨト

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Theorem

Let A, B and C be sets. Then,

$$(A \cup B) \cup C = A \cup (B \cup C); (A \cap B) \cap C = A \cap (B \cap C).$$

3
$$A \cup \emptyset = A$$
; $A \cap \emptyset = \emptyset$.

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Theorem

Let A, B and C be sets. Then,

$$(A \cup B) \cup C = A \cup (B \cup C); (A \cap B) \cap C = A \cap (B \cap C).$$

3
$$A \cup \emptyset = A$$
; $A \cap \emptyset = \emptyset$.

Proof

Make sure you can prove all of these. We will prove a couple now...

イロン イヨン イヨン イヨン

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

VENN DIAGRAMS

イロト イヨト イヨト イヨト

Note

Venn diagrams are very useful in visualizing set operations and often lead us to discover true statements about sets and their operations. However a sequence of Venn diagrams *WILL NOT be accepted as a proof.*

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

VENN DIAGRAMS

イロト イヨト イヨト イヨト

Note

Venn diagrams are very useful in visualizing set operations and often lead us to discover true statements about sets and their operations. However a sequence of Venn diagrams *WILL NOT be accepted as a proof.*

EXAMPLE

Draw the Venn diagrams which represent $A, B, A \cup B$ and $A \cap B$.

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

INCLUSION/EXCLUSION - FIRST CASE

PROPOSITION

Suppose that A and B are sets. Then,

 $|A| + |B| = |A \cup B| + |A \cap B|.$

< 口 > < 回 > < 回 > < 回 > < 回 > <

3

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

INCLUSION/EXCLUSION - FIRST CASE

PROPOSITION

Suppose that A and B are sets. Then,

$$|A| + |B| = |A \cup B| + |A \cap B|.$$

COROLLARY (INCLUSION/EXCULUSION)

 $|A \cup B| = |A| + |B| - |A \cap B|.$

・ロン ・回と ・ヨン ・ヨン

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Combinatorial Proof

イロン イヨン イヨン イヨン

æ

Proof

Let us label the elements of $A \cup B$ in the following 2 ways.

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

COMBINATORIAL PROOF

イロト イヨト イヨト イヨト

Proof

Let us label the elements of $A \cup B$ in the following 2 ways. First, we will label each element of A with an A.

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Combinatorial Proof

イロト イヨト イヨト イヨト

Proof

Let us label the elements of $A \cup B$ in the following 2 ways. First, we will label each element of A with an A. We then label each element of B with a B.

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Combinatorial Proof

イロト イヨト イヨト イヨト

Proof

Let us label the elements of $A \cup B$ in the following 2 ways. First, we will label each element of A with an A. We then label each element of B with a B. How many labels were used?

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Combinatorial Proof

イロト イヨト イヨト イヨト

Proof

Let us label the elements of $A \cup B$ in the following 2 ways. First, we will label each element of A with an A. We then label each element of B with a B. How many labels were used?

Answer 1

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Combinatorial Proof

イロト イヨト イヨト イヨト

Proof

Let us label the elements of $A \cup B$ in the following 2 ways. First, we will label each element of A with an A. We then label each element of B with a B. How many labels were used?

Answer 1

Answer 2

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Combinatorial Proof

イロト イヨト イヨト イヨト

Proof

Let us label the elements of $A \cup B$ in the following 2 ways. First, we will label each element of A with an A. We then label each element of B with a B. How many labels were used?

Answer 1

Answer 2

Thus A| + |B| = Number of Labels = $|A \cup B| + |A \cap B|$.

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

COMBINATORIAL PROOF

イロト イヨト イヨト イヨト

Proof Template

A combinatorial proof is typically used to prove an identity of the form

LHS = RHS.

We proceed as follows:

1 Pose a counting question.

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Combinatorial Proof

Proof Template

A combinatorial proof is typically used to prove an identity of the form

$$LHS = RHS.$$

We proceed as follows:

- **1** Pose a counting question.
- 2 Argue that the LHS answers the question.

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Combinatorial Proof

Proof Template

A combinatorial proof is typically used to prove an identity of the form

LHS = RHS.

We proceed as follows:

- **1** Pose a counting question.
- 2 Argue that the LHS answers the question.
- **8** Argue that the RHS answers the question.

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Combinatorial Proof

イロト イポト イヨト イヨト

Proof Template

A combinatorial proof is typically used to prove an identity of the form

LHS = RHS.

We proceed as follows:

- **1** Pose a counting question.
- 2 Argue that the LHS answers the question.
- **3** Argue that the RHS answers the question.
- 4 Conclude that

LHS = Answer = RHS.

Note

Finding the right question can be difficult. To get started ask yourself what is being counted by the LHS or the RHS.

イロン イヨン イヨン イヨン

Note

Finding the right question can be difficult. To get started ask yourself what is being counted by the LHS or the RHS.

INCLUSION/EXCLUSION APPLICATION

How many integers $1 \le x \le 1000$ are divisible by 2 or 5?

・ロン ・回と ・ヨン ・ヨン

1 Let A and B be sets. We say that A and B are disjoint provided that $A \cap B = \emptyset$.

・ロト ・回ト ・ヨト ・ヨト

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

DEFINITION

- **1** Let A and B be sets. We say that A and B are disjoint provided that $A \cap B = \emptyset$.
- 2 Let A₁,..., A_n be a collection of sets. This collection is said to be pairwise disjoint provided that whenever i ≠ j, A_i ∩ A_j = Ø.

・ロト ・回ト ・ヨト ・ヨト

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Definition

- **1** Let A and B be sets. We say that A and B are disjoint provided that $A \cap B = \emptyset$.
- 2 Let A₁,..., A_n be a collection of sets. This collection is said to be pairwise disjoint provided that whenever i ≠ j, A_i ∩ A_j = Ø.

EXAMPLE

Let $A = \{1, 2, 3\}, B = \{4, 5, 6\}$, and $C = \{7, 8, 9\}$. Check that this collection of 3 sets is pairwise disjoint.

イロン イヨン イヨン イヨン

COROLLARY

Let A and B be disjoint sets. Then $|A \cup B| = |A| + |B|$.

・ロン ・回 と ・ヨン ・ヨン

Union and Intersection Counting Set Operations Sets and Logic Cartesian Product

COROLLARY

Let A and B be disjoint sets. Then $|A \cup B| = |A| + |B|$.

COROLLARY

Suppose that A_1, \ldots, A_n is a pairwise disjoint collection of sets. Then,

$$|\cup_{i=1}^n A_i| = \sum_{i=1}^n |A_i|.$$

イロン イヨン イヨン イヨン

Let A and B be sets.

1 We define their <u>difference</u> $A \setminus B$ as $A \setminus B = \{x \in A : x \notin B\}$.

2 We define their symmetric difference $A \triangle B$ as $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

イロン イヨン イヨン イヨン

Definition

Let A and B be sets.

1 We define their <u>difference</u> $A \setminus B$ as $A \setminus B = \{x \in A : x \notin B\}$.

2 We define their symmetric difference $A \triangle B$ as $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

Note

The notation A - B is sometimes used in place of $A \setminus B$.

・ロン ・回と ・ヨン ・ヨン

Definition

Let A and B be sets.

1 We define their <u>difference</u> $A \setminus B$ as $A \setminus B = \{x \in A : x \notin B\}$.

2 We define their symmetric difference $A \triangle B$ as $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

Note

The notation A - B is sometimes used in place of $A \setminus B$.

EXAMPLE

Let
$$A = \{1, 2, 3, 4\}$$
 and let $B = \{1, 4, 7, 9\}$.
Compute $A \setminus B$, $B \setminus A$, $A \triangle B$ and $B \triangle A$.

イロト イヨト イヨト イヨト

EXAMPLE

Draw the Venn diagram for $A \triangle B$. Is there another convenient description/formula for this operator? Prove your formula.

イロト イヨト イヨト イヨト

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

Advanced Example

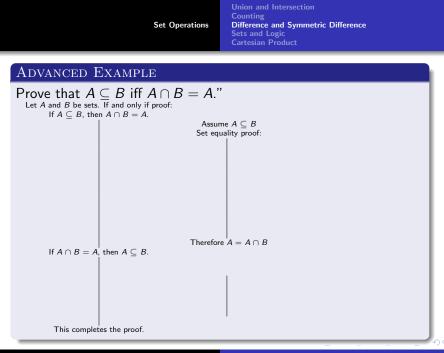
Prove that $A \subseteq B$ iff $A \cap B = A$."

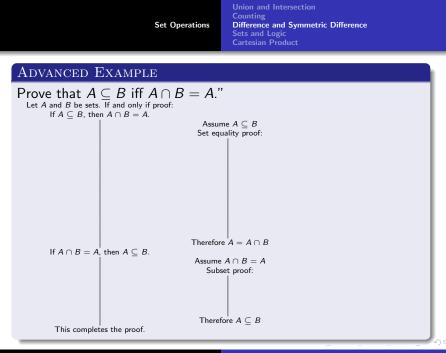
Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

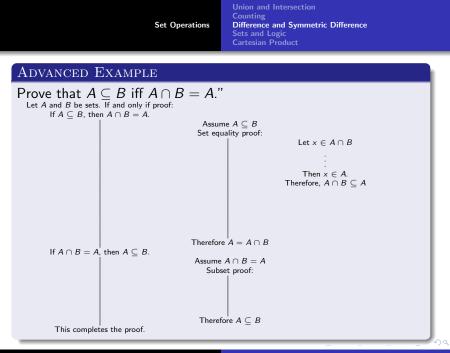
Advanced Example

Prove that $A \subseteq B$ iff $A \cap B = A$." Let A and B be sets. If and only if proof:

	Set Operations	Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product		
Advanced Example				
Prove that $A \subseteq B$ iff $A \cap B = A$." Let A and B be sets. If and only if proof: If $A \subseteq B$, then $A \cap B = A$.				
If $A \cap B = A$, then $A \subseteq B$.				
This completes the pro	of			







Union and Intersection Set Operations **Difference and Symmetric Difference** Sets and Logic Cartesian Product Advanced Example Prove that $A \subseteq B$ iff $A \cap B = A$." Let A and B be sets. If and only if proof: If $A \subseteq B$, then $A \cap B = A$. Assume $A \subseteq B$ Set equality proof: Let $x \in A \cap B$ Then $x \in A$. Therefore, $A \cap B \subseteq A$ Let $x \in A$ Then $x \in A \cap B$ Therefore $A \subseteq A \cap B$ Therefore $A = A \cap B$ If $A \cap B = A$, then $A \subseteq B$. Assume $A \cap B = A$ Subset proof: Therefore $A \subset B$ This completes the proof.

	Set Operations	Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product		
Advanced Example				
Let A and B be sets.	$\subseteq \underset{\text{If and only if proof:}}{B \text{ iff } A \cap B} = A.$	"		
		me $A \subseteq B$		
		juality proof:		
		Let $x \in A \cap B$		
		:		
		Then $x \in A$.		
		Therefore, $A \cap B \subseteq A$		
		Let $x \in A$		
		Leixen		
		:		
		Then $x \in A \cap B$		
	Thoust	$ \qquad \text{Therefore } A \subseteq A \cap B$ re $A = A \cap B$		
If $A \cap R = A$	then $A \subseteq B$.	re A = A + D		
A B =A		$e A \cap B = A$		
		oset proof:		
	50	Let $x \in A$		
		Then $x \in B$.		
	There	$A \subseteq B$		
This complet	tes the proof.			
complet				
		<u> </u>		

PROPOSITION

Let A, B, and C be sets. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

イロン イロン イヨン イヨン 三日

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

PROPOSITION

Let A, B, and C be sets. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

PROOF.

Let *A*, *B*, and *C* be sets such that $A \subseteq B$ and $B \subseteq C$. We will prove, by element chasing, that $A \subseteq C$. Suppose that $x \in A$. Since $x \in A$ and $A \subseteq B$, $x \in B$. Since $x \in B$ and $B \subseteq C$, $x \in C$. Therefore, $x \in C$ and $A \subseteq C$.

イロト イポト イヨト イヨト

Union and Intersection Counting Difference and Symmetric Difference Sets and Logic Cartesian Product

PROPOSITION

Let A, B, and C be sets. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

PROOF.

Let *A*, *B*, and *C* be sets such that $A \subseteq B$ and $B \subseteq C$. We will prove, by element chasing, that $A \subseteq C$. Suppose that $x \in A$. Since $x \in A$ and $A \subseteq B$, $x \in B$. Since $x \in B$ and $B \subseteq C$, $x \in C$. Therefore, $x \in C$ and $A \subseteq C$.

Example

Now prove it using a truth table.

イロト イヨト イヨト イヨト

Let A and B be sets. The Cartesian product $A \times B$ is defined as

 $A \times B = \{(a, b) : a \in A; b \in B\}.$

・ロン ・回 と ・ヨン ・ヨン

Let A and B be sets. The Cartesian product $A \times B$ is defined as

$$A \times B = \{(a, b) : a \in A; b \in B\}.$$

EXAMPLE

Take
$$A = \{1, 2, 3\}$$
 and $B = \{x, y\}$. What is $A \times B$?

イロン イヨン イヨン イヨン

Let A and B be sets. The Cartesian product $A \times B$ is defined as

$$A \times B = \{(a, b) : a \in A; b \in B\}.$$

EXAMPLE

Take
$$A = \{1, 2, 3\}$$
 and $B = \{x, y\}$. What is $A \times B$?

PROPOSITION

Let A and B be finite sets. Then $|A \times B| = |A||B|$.

・ロト ・回ト ・ヨト ・ヨト