MTHSC 3190 Section 2.12

Kevin James

IDEA

A combinatorial proof is typically used to prove an identity of the form

$$LHS = RHS$$
.

We proceed as follows:

- 1 Pose a counting question.
- 2 Argue that the LHS answers the question.
- 3 Argue that the RHS answers the question.
- Conclude that

$$LHS = Answer = RHS$$
.

Proposition

Let $0 < n \in \mathbb{Z}$. Then

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1.$$

Note

- **1** The LHS counts all subsets of k-element sets k for 0 < k < n 1.
- 2 The RHS counts the nonempty subsets of an *n*-element set.

EXAMPLE

Let us consider the nonempty subsets of $\{1,2,3\}$ which have a given largest element.

Largest element	Subsets
1	
_	
2	
3	

Proof

Let n > 0 and let $S = \{1, 2, ..., n\}$. How many nonempty subsets does S have?

- ANSWER 1 There are 2^n subsets of S and only one of them is empty. Thus there are $2^n 1$.
- ANSWER 2 Consider the subsets whose largest element is j. If T is such a subset, then $T \subset \{1, 2, \dots, (j-1)\}$. Thus there are 2^{j-1} such subsets. Since each nonempty subset of S has a largest element, we have # Nonemptysubsets $=\sum_{i=1}^n \#$ subsets with largest element $j=\sum_{i=1}^n 2^{j-1}$.

Thus we conclude That

$$2^{n} - 1 = \#$$
 Nonempty subsets $= \sum_{j=1}^{n} 2^{j-1} = \sum_{k=0}^{n-1} 2^{k}$

