MTHSC 3190 Section 3.13

Kevin James

A <u>relation</u> is a set of ordered pairs.

A relation is a set of ordered pairs.

EXAMPLE

$$R = \{(0,0), (0,1), (1,2), 2,5)\}$$

A relation is a set of ordered pairs.

EXAMPLE

$$R = \{(0,0), (0,1), (1,2), 2, 5)\}$$

NOTATION

If $(x, y) \in R$, we say "x is related to y by R" and we may write xRy. If $x, y) \notin R$ we write x Ry.

The < relation can be thought of as the set

$$<=\{\ldots,(-2,-1),(-2,0),\ldots,(1,2),\ldots(3,100),\ldots\}$$

The < relation can be thought of as the set

$$<=\{\ldots,(-2,-1),(-2,0),\ldots,(1,2),\ldots(3,100),\ldots\}$$

DEFINITION

Let R be a relation and let A and B be sets.

1 We say that "R is a relation on A" provided that $R \subseteq A \times A$.

The < relation can be thought of as the set

$$<=\{\ldots,(-2,-1),(-2,0),\ldots,(1,2),\ldots(3,100),\ldots\}$$

DEFINITION

Let R be a relation and let A and B be sets.

- **1** We say that "R is a relation on A" provided that $R \subseteq A \times A$.
- **2** We say that "R is a relation from A to B" provided that $R \subseteq A \times B$.

Let
$$A = \{1, 2, 3\}$$
 and $B = \{3, 4, 5\}$ and let $R = \{(1, 1), (2, 2), (3, 3)\}$, $S = \{(1, 2), (2, 3)\}$, $T = \{(2, 4), (3, 5)\}$, $U = \{(4, 1), (3, 2), (5, 3)\}$, $V = \{(17, 32), (0, 5), (1, 3), (2, 5)\}$, Then,

R is a relation ______
S is a relation _____
T is a relation _____
U is a relation _____
V is a relation

Let R be a relation. The inverse of R denoted by R^{-1} is the relation formed by reversing the order of all pairs in R. (-i.e. $R^{-1} = \{(y, x) : (x, y) \in R\}$.)

Let R be a relation. The inverse of R denoted by R^{-1} is the relation formed by reversing the order of all pairs in R. (-i.e. $R^{-1} = \{(y, x) : (x, y) \in R\}$.)

EXAMPLE

Let $R = \{(1,1), (1,2), (1,3), (2,4), (4,2)\}$. What is R^{-1} ?

Let R be a relation. The inverse of R denoted by R^{-1} is the relation formed by reversing the order of all pairs in R. (-i.e. $R^{-1} = \{(y, x) : (x, y) \in R\}$.)

EXAMPLE

Let $R = \{(1,1), (1,2), (1,3), (2,4), (4,2)\}$. What is R^{-1} ?

Note

If R is a relation from A to B, then R^{-1} is a relation from B to A.

PROPOSITION

Let R be a relation. Then $(R^{-1})^{-1} = R$.

PROPOSITION

Let R be a relation. Then $(R^{-1})^{-1} = R$.

Proof

Let R be a relation defined on a set A.

1 If $\forall x \in A, xRx$, then R is <u>reflexive</u>.

- 1 If $\forall x \in A, xRx$, then R is <u>reflexive</u>.
- 2 If $\forall x \in A, x \not Rx$, then R is irreflexive.

- 1 If $\forall x \in A, xRx$, then R is reflexive.
- 2 If $\forall x \in A, x \not Rx$, then R is irreflexive.
- 3 If $\forall (x,y) \in R, (y,x) \in R$, then R is symmetric.

- 1 If $\forall x \in A, xRx$, then R is reflexive.
- 2 If $\forall x \in A, x \not Rx$, then R is irreflexive.
- **3** If $\forall (x,y) \in R, (y,x) \in R$, then R is symmetric.
- 4 If $\forall x, y \in A, (xRy \land yRx) \Rightarrow x = y$, then R is antisymmetric.

- 1 If $\forall x \in A, xRx$, then R is <u>reflexive</u>.
- 2 If $\forall x \in A, x \not Rx$, then R is <u>irreflexive</u>.
- **3** If $\forall (x,y) \in R, (y,x) \in R$, then R is symmetric.
- **4** If $\forall x, y \in A, (xRy \land yRx) \Rightarrow x = y$, then R is antisymmetric.
- **6** If $\forall x, y \in A, (xRy \land yRz) \Rightarrow xRz$, then R is <u>transitive</u>

Let $A = \{1, 2, 3, 4\}$. For each of the following relations on A, indicate which properties the relation has and does not have.

- $S = \{(1,1), (1,2), (2,1), (3.2), (2,3)\}$
- **3** $T = \{(1,2), (1,3), (2,3)\}$
- $U = \{(1,1),(2,3),(3,1),(1,2)\}$

Let $A = \{1, 2, 3, 4\}$. For each of the following relations on A, indicate which properties the relation has and does not have.

- **2** $S = \{(1,1), (1,2), (2,1), (3.2), (2,3)\}$
- **3** $T = \{(1,2), (1,3), (2,3)\}$
- $U = \{(1,1),(2,3),(3,1),(1,2)\}$

EXAMPLE

Some other relations to consider.

- $\mathbf{0}$ < on \mathbb{Z} .
- $2 < \text{on } \mathbb{Z}$.
- $3 \mid \text{on } \mathbb{N}.$
- $oldsymbol{4}$ on \mathbb{Z} .

