MTHSC 3190 Section 3.14

Kevin James

DEFINITION

Let R be a relation on a set A. We say that R is an equivalence relation provided that R is

- Reflexive
- 2 Symmetric
- 3 Transitive.

EXAMPLE

Let $\mathcal S$ be the set of all finite sets. Let R be defined as follows. If A and B are sets, then A R $B \Leftrightarrow |A| = |B|$. Show that R is an equivalence relation on $\mathcal S$.

PROOF TEMPLATE

In order to show that a relation R on a set A is an equivalence relation we argue that it is reflexive, symmetric and transitive.

Proof.

Suppose that R is the relation on the set A defined by

REFLEXIVE Let $x \in A$ Then, xRx.

Symmetric Suppose that $x, y \in A$ and xRy. Then yRx.

TRANSITIVE Suppose that $x, y, z \in A$, xRy and yRz. Then, xRz.

Since R is reflexive, symmetric and transitive it is an equivalence relation on A.

DEFINITION

Let $0 < n \in \mathbb{Z}$. We say that $x, y \in \mathbb{Z}$ are congruent modulo n and write

$$x \equiv y \pmod{n}$$

provided that n|(x-y).

EXAMPLE

- $3 \equiv 13 \pmod{5}$.
- $10 \equiv 200 \pmod{19}$.
- $-5 \equiv 3 \pmod{4}$.
- $16 \equiv 30 \pmod{7}$.

THEOREM

Let $0 < n \in \mathbb{Z}$. The $\equiv \pmod{n}$ relation is an equivalence relation on \mathbb{Z} .

Proof.

Reflexive

Symmetric

TRANSITIVE

DEFINITION

Let R be an equivalence relation on a set A and let $a \in A$. We define the equivalence class of a, denoted by [a] or \bar{a} as

$$[a] = \{x \in A : xRa\}.$$

EXAMPLE

Consider $\equiv \pmod{2}$ on \mathbb{Z} .

[1] =

[2] =

[3] =

EXAMPLE

Let $S = \{1, 2, 3\}$. Consider the "has the same size" relation on 2^S .

$$[\emptyset] =$$

$$[{2}] =$$

$$[\{1,3\}] =$$

$$[\{1, 2, 3\}] =$$

PROPOSITION

Let R be an equivalence relation on a set A and let $a \in A$. Then $a \in [a]$.

Proof.

COROLLARY

Let R be an equivalence relation on a set A.

- $\bigcirc \bigcup_{a \in A} [a] = A.$

Proof.

PROPOSITION

Let R be an equivalence relation on a set A and let $a, b \in A$. Then $aRb \Leftrightarrow [a] = [b]$.

Proof.

Proposition

Let R ve an equivalence relation on a set A and let $a, x, y \in A$. If $x, y \in [a]$, then xRy.

Proof.

Exercise

Proposition

Let R be an equivalence relation on a set A and suppose that $[a] \cap [b] \neq \emptyset$. Then [a] = [b].

Proof.

COROLLARY

Let R be an equivalence relation on a set A. The equivalence classes of R are nonempty, pairwise disjoint subsets of A whose union is A.