MTHSC 3190 SECTION 3.14

Kevin James

Kevin James MTHSC 3190 Section 3.14

< 口 > < 回 > < 回 > < 回 > < 回 > <

Э

Let R be a relation on a set A. We say that R is an equivalence relation provided that R is

- 1 Reflexive
- 2 Symmetric
- 3 Transitive.

イロト イヨト イヨト イヨト

Let R be a relation on a set A. We say that R is an equivalence relation provided that R is

- 1 Reflexive
- 2 Symmetric
- 8 Transitive.

EXAMPLE

Let S be the set of all finite sets. Let R be defined as follows. If A and B are sets, then $A \ R \ B \Leftrightarrow |A| = |B|$. Show that R is an equivalence relation on S.

伺 ト イヨト イヨト

PROOF TEMPLATE

In order to show that a relation R on a set A is an equivalence relation we argue that it is reflexive, symmetric and transitive.

Proof.

Suppose that R is the relation on the set A defined by

REFLEXIVE Let $x \in A$ Then, xRx.

SYMMETRIC Suppose that $x, y \in A$ and xRy. Then yRx.

TRANSITIVE Suppose that $x, y, z \in A$, xRy and yRz. Then, xRz.

Since R is reflexive, symmetric and transitive it is an equivalence relation on A.

イロト イヨト イヨト イヨト

Let $0 < n \in \mathbb{Z}$. We say that $x, y \in \mathbb{Z}$ are congruent modulo n and write

 $x \equiv y \pmod{n}$

provided that n|(x - y).

イロン イ部ン イヨン イヨン 三日

Let $0 < n \in \mathbb{Z}$. We say that $x, y \in \mathbb{Z}$ are congruent modulo n and write

 $x \equiv y \pmod{n}$

provided that n|(x - y).

EXAMPLE

- $3 \equiv 13 \pmod{5}$.
- $10 \equiv 200 \pmod{19}$.
- $-5 \equiv 3 \pmod{4}$.
- $16 \equiv 30 \pmod{7}$.

イロン イ部ン イヨン イヨン 三日

Theorem

Let $0 < n \in \mathbb{Z}$. The $\equiv \pmod{n}$ relation is an equivalence relation on \mathbb{Z} .

・ロト ・回ト ・ヨト ・ヨト

Theorem

Let $0 < n \in \mathbb{Z}$. The $\equiv \pmod{n}$ relation is an equivalence relation on \mathbb{Z} .

Proof.

REFLEXIVE

Symmetric

TRANSITIVE

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

< ≣⇒

Let *R* be an equivalence relation on a set *A* and let $a \in A$. We define the equivalence class of *a*, denoted by [*a*] or \overline{a} as

$$[a] = \{x \in A : xRa\}.$$

イロン イヨン イヨン イヨン

Let *R* be an equivalence relation on a set *A* and let $a \in A$. We define the equivalence class of *a*, denoted by [*a*] or \overline{a} as

$$[a] = \{x \in A : xRa\}.$$

EXAMPLE

Consider $\equiv \pmod{2}$ on \mathbb{Z} . [1] = [2] =[3] =

イロト イヨト イヨト イヨト

Let *R* be an equivalence relation on a set *A* and let $a \in A$. We define the equivalence class of *a*, denoted by [*a*] or \overline{a} as

$$[a] = \{x \in A : xRa\}.$$

Example

Consider $\equiv \pmod{2}$ on \mathbb{Z} . [1] = [2] =[3] =

EXAMPLE

Let $S = \{1, 2, 3\}$. Consider the "has the same size" relation on 2^{S} . $[\emptyset] = [\{2\}] = [\{1, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 2, 3\}] = [\{1, 3\}] = [\{1, 2, 3\}] = [\{1, 3$

Let R be an equivalence relation on a set A and let $a \in A$. Then $a \in [a]$.

Proof.

ヘロン 人間 とくほど くほとう

Let R be an equivalence relation on a set A and let $a \in A$. Then $a \in [a]$.

Proof.

COROLLARY

Let R be an equivalence relation on a set A.

1
$$[a] \neq \emptyset, \forall a \in A.$$

2 $\bigcup_{a \in A} [a] = A.$

Proof.

Let R be an equivalence relation on a set A and let $a, b \in A$. Then $aRb \Leftrightarrow [a] = [b]$.

Proof.

Kevin James MTHSC 3190 Section 3.14

(ロ) (同) (E) (E) (E)

Let R ve an equivalence relation on a set A and let $a, x, y \in A$. If $x, y \in [a]$, then xRy.

Proof.

Exercise

<ロ> (日) (日) (日) (日) (日)

Let R ve an equivalence relation on a set A and let $a, x, y \in A$. If $x, y \in [a]$, then xRy.

Proof.

Exercise

PROPOSITION

Let R be an equivalence relation on a set A and suppose that $[a] \cap [b] \neq \emptyset$. Then [a] = [b].

Proof.

COROLLARY

Let R be an equivalence relation on a set A. The equivalence classes of R are nonempty, pairwise disjoint subsets of A whose union is A.

イロト イヨト イヨト イヨト