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Equivalence Relations and Equivalence Classes

Definition

Let R be a relation on a set A. We say that R is an
equivalence relation provided that R is

1 Reflexive

2 Symmetric

3 Transitive.

Example

Let S be the set of all finite sets. Let R be defined as follows. If A
and B are sets, then A R B ⇔ |A| = |B|. Show that R is an
equivalence relation on S.
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Equivalence Relations and Equivalence Classes

Proof Template

In order to show that a relation R on a set A is an equivalence
relation we argue that it is reflexive, symmetric and transitive.

Proof.

Suppose that R is the relation on the set A defined by . . . .

Reflexive Let x ∈ A. . . . . Then, xRx .

Symmetric Suppose that x , y ∈ A and xRy . . . . . Then yRx .

Transitive Suppose that x , y , z ∈ A, xRy and yRz . . . . . Then,
xRz .

Since R is reflexive, symmetric and transitive it is an equivalence
relation on A.
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Equivalence Relations and Equivalence Classes

Definition

Let 0 < n ∈ Z. We say that x , y ∈ Z are congruent modulo n and
write

x ≡ y (mod n)

provided that n|(x − y).

Example

• 3 ≡ 13 (mod 5).

• 10 ≡ 200 (mod 19).

• −5 ≡ 3 (mod 4).

• 16 ≡ 30 (mod 7).
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Equivalence Relations and Equivalence Classes

Theorem

Let 0 < n ∈ Z. The ≡ (mod n) relation is an equivalence relation
on Z.

Proof.

Reflexive

Symmetric

Transitive
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Equivalence Relations and Equivalence Classes

Definition

Let R be an equivalence relation on a set A and let a ∈ A. We
define the equivalence class of a, denoted by [a] or ā as

[a] = {x ∈ A : xRa}.

Example

Consider ≡ (mod 2) on Z.
[1] =
[2] =
[3] =

Example

Let S = {1, 2, 3}. Consider the “has the same size” relation on 2S .
[∅] =
[{2}] =
[{1, 3}] =
[{1, 2, 3}] =
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Equivalence Relations and Equivalence Classes

Proposition

Let R be an equivalence relation on a set A and let a ∈ A. Then
a ∈ [a].

Proof.

Corollary

Let R be an equivalence relation on a set A.

1 [a] 6= ∅, ∀a ∈ A.

2 ∪a∈A[a] = A.

Proof.
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Equivalence Relations and Equivalence Classes

Proposition

Let R be an equivalence relation on a set A and let a, b ∈ A. Then
aRb ⇔ [a] = [b].

Proof.
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Equivalence Relations and Equivalence Classes

Proposition

Let R ve an equivalence relation on a set A and let a, x , y ∈ A. If
x , y ∈ [a], then xRy .

Proof.

Exercise

Proposition

Let R be an equivalence relation on a set A and suppose that
[a] ∩ [b] 6= ∅. Then [a] = [b].

Proof.
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Equivalence Relations and Equivalence Classes

Corollary

Let R be an equivalence relation on a set A. The equivalence
classes of R are nonempty, pairwise disjoint subsets of A whose
union is A.
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