MTHSC 3190 Section 3.15

Kevin James

DEFINITION

Let A be a set. A partition \mathcal{P} of A is a pairwise disjoint set of nonempty subsets of A whose union is A.

EXAMPLE

$$A = \{1, 2, 3, 4\}$$
$$\mathcal{P}_1 = \{\{1, 3\}, \{2, 4\}\}$$
$$\mathcal{P}_2 = \{\{1, 2, 3\}, \{4\}\}$$

OBSERVATIONS

- If \mathcal{P} is a partition of A, then
 - **1** the elements of \mathcal{P} are subsets of A, that is $\mathcal{P} \subseteq 2^A$.
 - $2 \emptyset \not\in \mathcal{P}.$
 - **3** If $T, S \in \mathcal{P}$, then

$$T \cap S = \begin{cases} \emptyset, & \text{if } T \neq S, \\ T & \text{if } T = S. \end{cases}$$

Note

We can restate Cor 14.13 as follows. Let R be an equivalence relation on a set A. The equivalence classes of R form a partition of A.

DEFINITION

Let \mathcal{P} be a partition of a set A. Define an equivalence relation $\stackrel{\mathcal{P}}{\equiv}$ on A as follows:

 $\stackrel{\mathcal{P}}{\equiv} = \{(x, y) : \exists S \in \mathcal{P} \text{ such that } x, y \in S\},\$

that is $x \stackrel{\mathcal{P}}{\equiv} y$ if and only if x and y are in the same part of \mathcal{P} .

PROPOSITION

Let A be a set and let \mathcal{P} be a partition of A. The relation $\stackrel{\mathcal{P}}{\equiv}$ is an equivalence relation on A.

Proof.	
Reflexive	
Symmetric	
TRANSITIVE	

PROPOSITION

Let \mathcal{P} be a partition of a set A and let $\stackrel{\mathcal{P}}{\equiv}$ be defined as before. The equivalence classes of $\stackrel{\mathcal{P}}{\equiv}$. are precisely the parts of \mathcal{P} .

Proof.

Exercise. **Hint:** Let $\mathcal{E} = \{[a] : a \in A\}$. Show that $\mathcal{E} = \mathcal{P}$ using the set equality template.

EXAMPLE

Let $A = 2^{\{1,2,3\}}$ and let \sim be the "has the same size" relation. Let \mathcal{P} be the set of equivalence classes of \sim which we recall forms a partition of A. What are the equivalence classes of $\stackrel{\mathcal{P}}{\equiv}$.

REARRANGEMENTS

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

Solution

Let
$$L = \{w = (x, y, z) : x, y, z \in \{A, L_1, L_2\}\}.$$

Note that $|L| = 3! = 6$.

Now we define a relation \equiv on L as follows.

We say that $w_1 \equiv w_2$ iff when we erase the subscripts, the words become the same.

Note that \equiv is an equivalence relation on *L*. (CHECK THIS!).

Now, count the equivalence classes any word $w \in L$.

There are 2 words in each equivalence class, and thus $\frac{6}{2} = 3$

EXAMPLE

How many rearrangements of "MISSISSIPPI" are there?

Theorem

Let R be an equivalence relation on a finite set A. If all of the equivalence classes of R have the same size m, then the number of equivalence classes is given by

$$\#$$
 equiv classes $= rac{|A|}{m}$.

Note

Not all equivalence relations have the property that their equivalence classes all have the same size.

EXAMPLE

Let $A = 2^{\{1,2,3\}}$ and let R be the "has the same size" relation. List all of the equivalence classes of R.