MTHSC 3190 Section 3.15

Kevin James

Kevin James MTHSC 3190 Section 3.15

< 口 > < 回 > < 回 > < 回 > < 回 > <

Э

DEFINITION

Let A be a set. A partition \mathcal{P} of A is a pairwise disjoint set of nonempty subsets of A whose union is A.

イロト イヨト イヨト イヨト

DEFINITION

Let A be a set. A partition \mathcal{P} of A is a pairwise disjoint set of nonempty subsets of A whose union is A.

EXAMPLE

 $\begin{aligned} & A = \{1,2,3,4\} \\ & \mathcal{P}_1 = \{\{1,3\},\{2,4\}\} \\ & \mathcal{P}_2 = \{\{1,2,3\},\{4\}\} \end{aligned}$

・ロン ・回 と ・ ヨ と ・ ヨ と

- If \mathcal{P} is a partition of A, then
 - **1** the elements of \mathcal{P} are subsets of A,

- If \mathcal{P} is a partition of A, then
 - **1** the elements of \mathcal{P} are subsets of A, that is $\mathcal{P} \subseteq 2^A$.

・ロト ・回ト ・ヨト ・ヨト

3

- If \mathcal{P} is a partition of A, then
 - **1** the elements of \mathcal{P} are subsets of A, that is $\mathcal{P} \subseteq 2^A$.
 - $2 \emptyset \not\in \mathcal{P}.$

イロン イボン イヨン イヨン 三日

- If \mathcal{P} is a partition of A, then
 - **1** the elements of \mathcal{P} are subsets of A, that is $\mathcal{P} \subseteq 2^A$.
 - $2 \emptyset \not\in \mathcal{P}.$
 - **3** If $T, S \in \mathcal{P}$, then

$$T \cap S = \begin{cases} \emptyset, & \text{if } T \neq S, \\ T & \text{if } T = S. \end{cases}$$

イロン イボン イヨン イヨン 三日

Note

We can restate Cor 14.13 as follows. Let R be an equivalence relation on a set A. The equivalence classes of R form a partition of A.

イロト イヨト イヨト イヨト

Note

We can restate Cor 14.13 as follows. Let R be an equivalence relation on a set A. The equivalence classes of R form a partition of A.

DEFINITION

Let \mathcal{P} be a partition of a set A. Define an equivalence relation $\stackrel{\mathcal{P}}{\equiv}$ on A as follows:

 $\stackrel{\mathcal{P}}{\equiv} = \{(x, y) : \exists S \in \mathcal{P} \text{ such that } x, y \in S\},\$

that is $x \stackrel{\mathcal{P}}{\equiv} y$ if and only if x and y are in the same part of \mathcal{P} .

伺 とく ヨ とく

Let A be a set and let \mathcal{P} be a partition of A. The relation $\stackrel{\mathcal{P}}{\equiv}$ is an equivalence relation on A.

Proof.		
Reflexive		
Symmetric		
TRANSITIVE		
	E	

문 문 문

Let \mathcal{P} be a partition of a set A and let $\stackrel{\mathcal{P}}{\equiv}$ be defined as before. The equivalence classes of $\stackrel{\mathcal{P}}{\equiv}$. are precisely the parts of \mathcal{P} .

Proof.

Exercise.

Let \mathcal{P} be a partition of a set A and let $\stackrel{\mathcal{P}}{\equiv}$ be defined as before. The equivalence classes of $\stackrel{\mathcal{P}}{\equiv}$. are precisely the parts of \mathcal{P} .

Proof.

Exercise. **Hint:** Let $\mathcal{E} = \{[a] : a \in A\}$. Show that $\mathcal{E} = \mathcal{P}$ using the set equality template.

A (1) > A (2) > A

Let \mathcal{P} be a partition of a set A and let $\stackrel{\mathcal{P}}{\equiv}$ be defined as before. The equivalence classes of $\stackrel{\mathcal{P}}{\equiv}$. are precisely the parts of \mathcal{P} .

Proof.

Exercise. **Hint:** Let $\mathcal{E} = \{[a] : a \in A\}$. Show that $\mathcal{E} = \mathcal{P}$ using the set equality template.

Example

Let $A = 2^{\{1,2,3\}}$ and let \sim be the "has the same size" relation. Let \mathcal{P} be the set of equivalence classes of \sim which we recall forms a partition of A. What are the equivalence classes of $\stackrel{\mathcal{P}}{\equiv}$.

・ロト ・回ト ・ヨト ・ヨト

・ロン ・回 と ・ 回 と ・ 回 と

æ

EXAMPLE

How many rearrangements of "AND" are there?

・ロン ・回 と ・ 回 と ・ 回 と

3

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

SOLUTION

Let
$$L = \{w = (x, y, z) : x, y, z \in \{A, L_1, L_2\}\}.$$

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

Solution

Let $L = \{w = (x, y, z) : x, y, z \in \{A, L_1, L_2\}\}.$ Note that |L| = 3! = 6.

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

Solution

Let $L = \{w = (x, y, z) : x, y, z \in \{A, L_1, L_2\}\}$. Note that |L| = 3! = 6. Now we define a relation \equiv on L as follows.

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

Solution

Let $L = \{w = (x, y, z) : x, y, z \in \{A, L_1, L_2\}\}$. Note that |L| = 3! = 6. Now we define a relation \equiv on L as follows. We say that $w_1 \equiv w_2$ iff when we erase the subscripts, the words become the same.

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

Solution

Let
$$L = \{w = (x, y, z) : x, y, z \in \{A, L_1, L_2\}\}.$$

Note that $|L| = 3! = 6$.

Now we define a relation \equiv on L as follows.

We say that $w_1 \equiv w_2$ iff when we erase the subscripts, the words become the same.

Note that \equiv is an equivalence relation on *L*. (CHECK THIS!).

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

Solution

Let
$$L = \{w = (x, y, z) : x, y, z \in \{A, L_1, L_2\}\}.$$

Note that $|L| = 3! = 6$.

Now we define a relation \equiv on L as follows.

We say that $w_1 \equiv w_2$ iff when we erase the subscripts, the words become the same.

Note that \equiv is an equivalence relation on *L*. (CHECK THIS!). Now, count the equivalence classes any word $w \in L$.

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

Solution

Let
$$L = \{w = (x, y, z) : x, y, z \in \{A, L_1, L_2\}\}.$$

Note that $|L| = 3! = 6$.

Now we define a relation \equiv on L as follows.

We say that $w_1 \equiv w_2$ iff when we erase the subscripts, the words become the same.

Note that \equiv is an equivalence relation on *L*. (CHECK THIS!).

Now, count the equivalence classes any word $w \in L$.

There are 2 words in each equivalence class, and

EXAMPLE

How many rearrangements of "AND" are there?

EXAMPLE

How many rearrangements of "ALL" are there?

Solution

Let
$$L = \{w = (x, y, z) : x, y, z \in \{A, L_1, L_2\}\}.$$

Note that $|L| = 3! = 6$.

Now we define a relation \equiv on L as follows.

We say that $w_1 \equiv w_2$ iff when we erase the subscripts, the words become the same.

Note that \equiv is an equivalence relation on *L*. (CHECK THIS!).

Now, count the equivalence classes any word $w \in L$.

There are 2 words in each equivalence class, and thus $\frac{6}{2} = 3$

EXAMPLE

How many rearrangements of "MISSISSIPPI" are there?

・ロト ・回ト ・ヨト ・ヨト

EXAMPLE

How many rearrangements of "MISSISSIPPI" are there?

Theorem

Let R be an equivalence relation on a finite set A. If all of the equivalence classes of R have the same size m, then the number of equivalence classes is given by

$$\#$$
 equiv classes $= rac{|A|}{m}$.

I ► < I ► ►</p>

Note

Not all equivalence relations have the property that their equivalence classes all have the same size.

イロン イヨン イヨン イヨン

Э

Note

Not all equivalence relations have the property that their equivalence classes all have the same size.

EXAMPLE

Let $A = 2^{\{1,2,3\}}$ and let R be the "has the same size" relation. List all of the equivalence classes of R.