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Partitions

Definition

Let A be a set. A partition P of A is a pairwise disjoint set of
nonempty subsets of A whose union is A.

Example

A = {1, 2, 3, 4}
P1 = {{1, 3}, {2, 4}}
P2 = {{1, 2, 3}, {4}}
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Partitions

Observations

If P is a partition of A, then

1 the elements of P are subsets of A,

that is P ⊆ 2A.

2 ∅ 6∈ P.

3 If T ,S ∈ P, then

T ∩ S =

{
∅, if T 6= S ,

T if T = S .

4 ∪S∈P S = A.
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Partitions

Note

We can restate Cor 14.13 as follows. Let R be an equivalence
relation on a set A. The equivalence classes of R form a partition
of A.

Definition

Let P be a partition of a set A. Define an equivalence relation
P≡

on A as follows:

P≡ = {(x , y) : ∃S ∈ P such that x , y ∈ S},

that is x
P≡ y if and only if x and y are in the same part of P.
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Partitions

Proposition

Let A be a set and let P be a partition of A. The relation
P≡ is an

equivalence relation on A.

Proof.

Reflexive

Symmetric

Transitive
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Partitions

Proposition

Let P be a partition of a set A and let
P≡ be defined as before. The

equivalence classes of
P≡. are precisely the parts of P.

Proof.

Exercise.

Hint: Let E = {[a] : a ∈ A}.
Show that E = P using the set equality template.

Example

Let A = 2{1,2,3} and let ∼ be the “has the same size” relation. Let
P be the set of equivalence classes of ∼ which we recall forms a

partition of A. What are the equivalence classes of
P≡.
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Partitions

Rearrangements

Example

How many rearrangements of “AND” are there?

Example

How many rearrangements of “ALL” are there?

Solution

Let L = {w = (x , y , z) : x , y , z ∈ {A, L1, L2}}.
Note that |L| = 3! = 6.
Now we define a relation ≡ on L as follows.
We say that w1 ≡ w2 iff when we erase the subscripts, the words
become the same.
Note that ≡ is an equivalence relation on L. (CHECK THIS!).
Now, count the equivalence classes any word w ∈ L.
There are 2 words in each equivalence class, and thus 6

2 = 3
rearrangements.
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Partitions

Example

How many rearrangements of “MISSISSIPPI” are there?

Theorem

Let R be an equivalence relation on a finite set A. If all of the
equivalence classes of R have the same size m, then the number of
equivalence classes is given by

# equiv classes =
|A|
m

.
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Partitions

Note

Not all equivalence relations have the property that their
equivalence classes all have the same size.

Example

Let A = 2{1,2,3} and let R be the “has the same size” relation. List
all of the equivalence classes of R.
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