MTHSC 3190 Section 3.16

Kevin James

Definition

Let $n, k \in \mathbb{N}$. The symbol $\binom{n}{k}$ denotes the number of k-element subsets of an *n*-element set. The symbol is read as "*n* choose k."

EXAMPLE

Compute $\binom{5}{0}$ and $\binom{5}{5}$.

Note

For
$$n \in \mathbb{N}$$
, $\binom{n}{n} = \binom{n}{0} = 1$.

EXAMPLE

Compute $\binom{5}{1}$ and $\binom{5}{4}$.

Note

For
$$n \in \mathbb{N}$$
, $\binom{n}{1} = \binom{n}{n-1} = n$.

PROPOSITION

Let $n, k \in \mathbb{N}$. with $0 \le k \le n$. Then

$$\binom{n}{k} = \binom{n}{n-k}$$

Proof.

Note

Thus we know that $\binom{5}{2} = \binom{5}{3}$ even though we do not know the value of either.

EXAMPLE

Now, let's carefully compute $\binom{5}{2} = \binom{5}{3}$.

Lemma

Let
$$m \in \mathbb{N}$$
. Then $\sum_{j=1}^m j = rac{m(m+1)}{2}$.

PROPOSITION

Let
$$n \in \mathbb{N}$$
. Then $\binom{n}{2} = \binom{n}{n-2} = \frac{n(n-1)}{2}$.

Proof.

Note that there are there are n-j subsets of size 2 whose smallest element is j, $(1 \le j \le n-1)$. Thus the number of size 2 subsets is

$$\sum_{j=1}^{n-1}(n-j)=\sum_{k=1}^{n-1}k=rac{n(n-1)}{2}$$
 from our lemma.

EXAMPLE

1 Compute
$$\binom{n}{k}$$
 for $1 \le n \le 5$ and $0 \le k \le n$.

2 Compute
$$(x + y)^m$$
 for $1 \le m \le 5$.

BINOMIAL THEOREM

Let $n \in \mathbb{N}$. Then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Proof.

EXERCISE

Arrange the binomial coefficients into a triangle. This is known as Pascal's tirangle. Write out the first few rows. Do you notice a relationship between consecutive rows?

Theorem

Let
$$n, k \in \mathbb{N}$$
. Then $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

COMBINATORIAL PROOF.

Theorem

Suppose that $n, k \in \mathbb{N}$. Then

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Proof.