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Binomial Coefficients

Let n, k € N. The symbol (}) denotes the number of k-element
subsets of an n-element set. The symbol is read as “n choose k.”
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DEFINITION

Let n, k € N. The symbol (}) denotes the number of k-element
subsets of an n-element set. The symbol is read as “n choose k.”

v

EXAMPLE

Compute (g) and (g)

A\
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DEFINITION

Let n, k € N. The symbol (}) denotes the number of k-element
subsets of an n-element set. The symbol is read as “n choose k.”

EXAMPLE

Compute (5) and (5)

FornEN() (0)—1.

N
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DEFINITION

Let n, k € N. The symbol (}) denotes the number of k-element
subsets of an n-element set. The symbol is read as “n choose k.”

EXAMPLE

Compute (5) and (5)

FornEN() (0)—1.

EXAMPLE

Compute (?) and (i)

A\
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DEFINITION

Let n, k € N. The symbol (}) denotes the number of k-element
subsets of an n-element set. The symbol is read as “n choose k.”

EXAMPLE

Compute (5) and (5)

FornGN() (0)—1.

EXAMPLE

Compute (?) and (i)

For n € N, ():(n 1) n.

v
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Binomial Coefficients

PROPOSITION

Let n,k € N. with0 < k < n. Then

<Z> - (,,fk)
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Binomial Coefficients

PROPOSITION

Let n,k € N. with 0 < k < n. Then

<Z> - (,,fk)
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Binomial Coefficients

PROPOSITION

Let n,k € N. with0 < k < n. Then

<Z> - (,,fk)

PROOF.

5

Thus we know that (g) = (3) even though we do not know the
value of either.
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Binomial Coefficients

PROPOSITION
Let n,k € N. with0 < k < n. Then

<Z> - (nfk>'

PROOF.
]

NOTE

Thus we know that (g) = (g) even though we do not know the
value of either.

v
EXAMPLE

Now, let’s carefully compute (g) = (g)
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Binomial Coefficients

Let me N. Then 3 7, j =
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Binomial Coefficients

Let me N. Then 3 7, j = w
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LEMMA

Let me N. Then 3 7, j = w

v

PROPOSITION

Let n € N. Then (3) = (,",) = X1,
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LEMMA

Let me N. Then 3 ", j = m(n;rl)'

PROPOSITION

Let n € N. Then (3) = (,",) = X1,

v

PROOF.

Note that there are there are n — j subsets of size 2 whose smallest
element is j, (1 <j<n-—1).

Kevin James MTHSC 3190 Section 3.16



LEMMA

Let me N. Then 3 ", j = m(n;rl)'

PROPOSITION

Let ne€N. Then (5) = (,",) = (2

PROOF.

Note that there are there are n — j subsets of size 2 whose smallest
element is j, (1 <j<n-—1).
Thus the number of size 2 subsets is
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LEMMA

Let me N. Then 3 ", j = m(n;rl)'

PROPOSITION

Let ne€N. Then (5) = (,",) = (2

PROOF.

Note that there are there are n — j subsets of size 2 whose smallest
element is j, (1 <j<n-—1).
Thus the number of size 2 subsets is
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LEMMA

Let me N. Then 3 ", j = m(n;rl)'

PROPOSITION

Let ne€N. Then (5) = (,",) = (2

PROOF.

Note that there are there are n — j subsets of size 2 whose smallest
element is j, (1 <j<n-—1).
Thus the number of size 2 subsets is

n—1 n—1
dn—j)=)> k=
j=1 k=1
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LEMMA

Let me N. Then 3 ", j = m(n;rl)'

PROPOSITION

Let ne€N. Then (5) = (,",) = (2

PROOF.

Note that there are there are n — j subsets of size 2 whose smallest
element is j, (1 <j<n-—1).
Thus the number of size 2 subsets is

nlni :n—lk n(n—l)

j=1

from our lemma.

Ol
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Binomial Coefficients

©® Compute (Z) forl<n<5and 0< k < n.
® Compute (x +y)" for 1 < m <5.
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Binomial Coefficients

® Compute (Z) forl<n<5and 0< k < n.
® Compute (x +y)" for 1 < m <5.

BINOMIAL THEOREM
Let n € N. Then
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Binomial Coefficients

Arrange the binomial coefficients into a triangle. This is known as
Pascal’s tirangle. Write out the first few rows. Do you notice a
relationship between consecutive rows?

Kevin James MTHSC 3190 Section 3.16



Binomial Coefficients

EXERCISE

Arrange the binomial coefficients into a triangle. This is known as
Pascal’s tirangle. Write out the first few rows. Do you notice a
relationship between consecutive rows?

THEOREM

Let n, k € N. Then(")—(z i)+(k)

COMBINATORIAL PROOF.
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Binomial Coefficients

Suppose that n, k € N. Then

PROOF.
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