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Recall

The conditional statement A→ B and its contrapositive
¬B → ¬A are logically equivalent.

Proof by Contrapositive

To prove “If A then B” prove instead the logically equivalent
statement “If ¬B then ¬A.

Proposition

Let m be an integer. If m2 is even, then m is even.

Note

The challenge with proving the statement “If m2 is even, then m is
even” directly is that writing m2 = 2k isn’t enough. For example,
6 is even, but it is not a square. A proof by the contrapositive
makes the statement much easier to prove.
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Proposition

Let x be an integer. If x2 + 2x < 0, then x < 0.
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Note

Consider the statement A→ FALSE
Recalling our work with truth tables and boolean algebra, if this
statement is true then what can we say about A?
A must be FALSE if the statement is true.

Proof by Contradiction

In order to prove a statement S , it is sufficient to prove
(¬S ⇒ FALSE) is a true statement.
That is we argue as follows.

Proof.

For the sake of contradiction, assume that ¬S is true.
...

Deduce a statement which is obviously false.
Then you have proved that (¬S ⇒ FALSE) and thus ¬S is false
which means that S is true.
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Proposition

No integer is both even and odd.

Note

Note that this is equivalent to
(∀x ∈ Z,¬ (x is even and x is ood.)) which is equivalent to
(∀x ∈ Z, x is not even OR x is not odd).

Proof.

For the sake of contradiction, we will assume
¬ (∀x ∈ Z, x is not even OR x is not odd), which is equivalent to
∃x ∈ Z, x is even AND x is odd.
Then ∃k,m ∈ Z such that x = 2k and x = 2m + 1.
Thus, 2x = x + x = 2k + 2m + 1.
which implies that 1 = 2(x − k −m).
Thus we have proved that 1 is an even number which is FALSE.
Thus our assumption must have been false so we have proved the
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Proving If-Then statements by contradiction

1 (A→ B) = (¬A ∨ B) Write out the truth table for this.

2 Thus to prove A⇒ B by contradiction, we prove
((A ∧ ¬B)⇒ FALSE).

3 Such a proof begins as follows. Assume for the sake of
contradiction (A ∧ ¬B) . . . . We then deduce a statement
which is false.

Proposition

Suppose that a, b ∈ Z. If a 6= 0, then there is at most one integer
x such that ax + b = 0.
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