Proof by Contrapositive Proof by contradiction

MTHSC 3190 SECTION 4.19

Kevin James

Kevin James MTHSC 3190 Section 4.19

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

RECALL

The conditional statement $A \rightarrow B$ and its contrapositive

 $\neg B \rightarrow \neg A$ are logically equivalent.

・ロン ・回と ・ヨン ・ヨン

Recall

The conditional statement $A \rightarrow B$ and its contrapositive

 $\neg B \rightarrow \neg A$ are logically equivalent.

PROOF BY CONTRAPOSITIVE

To prove "If A then B" prove instead the logically equivalent statement "If $\neg B$ then $\neg A$.

・ロト ・回ト ・ヨト ・ヨト

Recall

The conditional statement $A \rightarrow B$ and its contrapositive

 $\neg B \rightarrow \neg A$ are logically equivalent.

PROOF BY CONTRAPOSITIVE

To prove "If A then B" prove instead the logically equivalent statement "If $\neg B$ then $\neg A$.

PROPOSITION

Let m be an integer. If m^2 is even, then m is even.

イロン イヨン イヨン イヨン

RECALL

The conditional statement $A \rightarrow B$ and its contrapositive

 $\neg B \rightarrow \neg A$ are logically equivalent.

PROOF BY CONTRAPOSITIVE

To prove "If A then B" prove instead the logically equivalent statement "If $\neg B$ then $\neg A$.

Proposition

Let m be an integer. If m^2 is even, then m is even.

Note

The challenge with proving the statement "If m^2 is even, then m is even" directly is that writing $m^2 = 2k$ isn't enough. For example, 6 is even, but it is not a square. A proof by the contrapositive makes the statement much easier to prove.

Let x be an integer. If $x^2 + 2x < 0$, then x < 0.

イロン イヨン イヨン イヨン

Э

Consider the statement $A \rightarrow \mathsf{FALSE}$

Kevin James MTHSC 3190 Section 4.19

Consider the statement $A \rightarrow \mathsf{FALSE}$

Recalling our work with truth tables and boolean algebra, if this statement is true then what can we say about *A*?

æ

- ∢ ≣ ▶

Consider the statement $A \rightarrow \mathsf{FALSE}$

Recalling our work with truth tables and boolean algebra, if this statement is true then what can we say about *A*?

A must be FALSE if the statement is true.

- ∢ ≣ ▶

Consider the statement $A \rightarrow \mathsf{FALSE}$

Recalling our work with truth tables and boolean algebra, if this

statement is true then what can we say about A?

A must be FALSE if the statement is true.

PROOF BY CONTRADICTION

In order to prove a statement S, it is sufficient to prove $(\neg S \Rightarrow \mathsf{FALSE})$ is a true statement.

Consider the statement $A \rightarrow \mathsf{FALSE}$

Recalling our work with truth tables and boolean algebra, if this

statement is true then what can we say about A?

A must be FALSE if the statement is true.

PROOF BY CONTRADICTION

In order to prove a statement S, it is sufficient to prove $(\neg S \Rightarrow \mathsf{FALSE})$ is a true statement. That is we argue as follows.

Consider the statement $A \rightarrow \mathsf{FALSE}$

Recalling our work with truth tables and boolean algebra, if this

statement is true then what can we say about A?

A must be FALSE if the statement is true.

PROOF BY CONTRADICTION

In order to prove a statement S, it is sufficient to prove $(\neg S \Rightarrow \mathsf{FALSE})$ is a true statement. That is we argue as follows.

Proof.

For the sake of contradiction, assume that $\neg S$ is true.

Deduce a statement which is obviously false. Then you have proved that $(\neg S \Rightarrow FALSE)$ and thus $\neg S$ is false which means that S is true.

No integer is both even and odd.

No integer is both even and odd.

Note

Note that this is equivalent to

 $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to

・ロト ・回ト ・ヨト

- < ∃ >

No integer is both even and odd.

Note

Note that this is equivalent to

 $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to

 $(\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}).$

イロト イヨト イヨト イヨト

No integer is both even and odd.

Note

Note that this is equivalent to $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to $(\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}).$

Proof.

For the sake of contradiction, we will assume

No integer is both even and odd.

Note

Note that this is equivalent to $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to $(\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}).$

Proof.

For the sake of contradiction, we will assume

 $eg (\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}), \text{ which is equivalent to}$

No integer is both even and odd.

Note

Note that this is equivalent to $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to $(\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}).$

Proof.

For the sake of contradiction, we will assume $\neg (\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd})$, which is equivalent to $\exists x \in \mathbb{Z}, x \text{ is even AND } x \text{ is odd.}$

No integer is both even and odd.

Note

Note that this is equivalent to $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to $(\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}).$

Proof.

For the sake of contradiction, we will assume

 \neg ($\forall x \in \mathbb{Z}, x$ is not even OR x is not odd), which is equivalent to $\exists x \in \mathbb{Z}, x$ is even AND x is odd.

Then $\exists k, m \in \mathbb{Z}$ such that x = 2k and x = 2m + 1.

No integer is both even and odd.

Note

Note that this is equivalent to $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to $(\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}).$

Proof.

For the sake of contradiction, we will assume $\neg (\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd})$, which is equivalent to $\exists x \in \mathbb{Z}, x \text{ is even AND } x \text{ is odd.}$ Then $\exists k, m \in \mathbb{Z}$ such that x = 2k and x = 2m + 1. Thus, 2x = x + x = 2k + 2m + 1.

No integer is both even and odd.

Note

Note that this is equivalent to $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to $(\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}).$

Proof.

For the sake of contradiction, we will assume $\neg (\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd})$, which is equivalent to $\exists x \in \mathbb{Z}, x \text{ is even AND } x \text{ is odd.}$ Then $\exists k, m \in \mathbb{Z}$ such that x = 2k and x = 2m + 1. Thus, 2x = x + x = 2k + 2m + 1. which implies that 1 = 2(x - k - m).

No integer is both even and odd.

Note

Note that this is equivalent to $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to $(\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}).$

Proof.

For the sake of contradiction, we will assume $\neg (\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd})$, which is equivalent to $\exists x \in \mathbb{Z}, x \text{ is even AND } x \text{ is odd.}$ Then $\exists k, m \in \mathbb{Z}$ such that x = 2k and x = 2m + 1. Thus, 2x = x + x = 2k + 2m + 1. which implies that 1 = 2(x - k - m). Thus we have proved that 1 is an even number which is FALSE.

No integer is both even and odd.

Note

Note that this is equivalent to $(\forall x \in \mathbb{Z}, \neg (x \text{ is even and } x \text{ is ood.}))$ which is equivalent to $(\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd}).$

Proof.

For the sake of contradiction, we will assume $\neg (\forall x \in \mathbb{Z}, x \text{ is not even OR } x \text{ is not odd})$, which is equivalent to $\exists x \in \mathbb{Z}, x \text{ is even AND } x \text{ is odd.}$ Then $\exists k, m \in \mathbb{Z}$ such that x = 2k and x = 2m + 1. Thus, 2x = x + x = 2k + 2m + 1. which implies that 1 = 2(x - k - m). Thus we have proved that 1 is an even number which is FALSE.

Thus our assumption must have been false so we have proved the

(1) $(A \rightarrow B) = (\neg A \lor B)$ Write out the truth table for this.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

- ($A \rightarrow B$) = ($\neg A \lor B$) Write out the truth table for this.
- **2** Thus to prove $A \Rightarrow B$ by contradiction, we prove $((A \land \neg B) \Rightarrow \mathsf{FALSE}).$

イロン イヨン イヨン イヨン

- **1** $(A \rightarrow B) = (\neg A \lor B)$ Write out the truth table for this.
- **2** Thus to prove $A \Rightarrow B$ by contradiction, we prove $((A \land \neg B) \Rightarrow \mathsf{FALSE}).$
- **3** Such a proof begins as follows.

イロト イポト イヨト イヨト

- **1** $(A \rightarrow B) = (\neg A \lor B)$ Write out the truth table for this.
- **2** Thus to prove $A \Rightarrow B$ by contradiction, we prove $((A \land \neg B) \Rightarrow \mathsf{FALSE}).$
- Such a proof begins as follows. Assume for the sake of contradiction (A ∧ ¬B) We then deduce a statement which is false.

イロン イ部ン イヨン イヨン 三日

- **1** $(A \rightarrow B) = (\neg A \lor B)$ Write out the truth table for this.
- **2** Thus to prove $A \Rightarrow B$ by contradiction, we prove $((A \land \neg B) \Rightarrow \mathsf{FALSE}).$
- Such a proof begins as follows. Assume for the sake of contradiction (A ∧ ¬B) We then deduce a statement which is false.

PROPOSITION

Suppose that $a, b \in \mathbb{Z}$. If $a \neq 0$, then there is at most one integer x such that ax + b = 0.

イロン イ部ン イヨン イヨン 三日