MTHSC 3190 Section 4.20

Kevin James

Smallest Counterexample

Suppose that we want to prove a statement of the form $A \rightarrow B$.

We will proceed as in proof by contradiction. That is, we assume there is a counterexample.

Now, if the statement is a statement about natural numbers then there will be a *smallest counterexample*.

Use this idea of "smallest counterexample" to derive a false statement

Then we have a proof of the statement by contradiction.

Proof by smallest counterexample

Suppose that we want to prove a statement of the form $A \rightarrow B$.

- For the sake of contradiction, assume that the statement is false.
- 2 Let x be the smallest counterexample to the statement. It must be clear that a "smallest counterexample" must exist in the case that the statement is false.
- **3** (Basis Step) Check that $0 \notin X$.
- **4** (Step Back) Consider an instance of the result that is just smaller than x (typically x-1 or x/2). Then the result must be true for this smaller value. Use this to deduce a contradiction. (Many times, the contradiction is to show that the result must also hold for x which we assumed it did not.)
- Since we deduced a contradiction from our assumption that the statement was false, it now follows that the statement is true.

Proposition	
Every natural number n is either even or odd.	
Proof.	
Corollary	
Every integer is either even or odd.	
Proof.	

Proposition

Let $n \in \mathbb{N}$. The sum of the first n odd natural numbers is n^2 . That is, $\sum_{k=1}^{n} (2k-1) = n^2$.

Proof.

Well Ordering Principle

Every nonempty set of natural numbers contains a smallest element.

EXAMPLE

- **1** Let $XS = \{x \in \mathbb{N} : x \text{ is prime}\}$. The smallest element is
- **2** Let $Y = \{y \in \mathbb{Q} : y > 0\}$. Note that this set has no smallest element.
- **3** Let $X = \{x \in \mathbb{N} : x \text{ is both even and odd}\}$. This set also has no smallest element because it is empty.

Proof by Well-ordering principle

To prove a statement S about natural numbers:

- **1** Let X be the set of counterexamples to S. Make sure it is clear that $X \subseteq \mathbb{N}$.
- **2** (Basis Step:) Check that $0 \notin X$.
- **3** Suppose that $m \in X$.
- **4** (**Step Back:**) Pick a natural number $0 \le y(m) < m$ (typically y(m) = m 1). Show that $(m \in X \Rightarrow y \in X)$. Note that it may be easier to show the contrapositive $(y \notin X \Rightarrow m \notin X)$.
- **6** Note that you have proved that $X \subseteq \mathbb{N}$ has no smallest element and thus is empty.

Smallest Counterexample

Proposition

Let $a \neq 0, 1$. For $n \in \mathbb{N}$, $\sum_{k=0}^{n} a^k = \frac{a^{n+1}-1}{a-1}$.

QUESTION

Which is bigger 2^n or n^2 ?

EXAMPLE

Let's see....

n	2 ⁿ	n ²
0	1	0
1	2	1
2	4	4
3	8	9
4	16	16
5	32	25
6	64	36
7	128	49
8	256	64
9	512	81
10	1024	100

PROPOSITION

For all $n \ge 5$, $2^n > n^2$.

PROOF.

DEFINITION (RECURSIVE)

We define the Fibonacci sequence as follows.

$$F_0 = F_1 = 1;$$
 For $n \ge 2, F_n = F_{n-1} + F_{n-2}.$

Proposition

For all $n \in \mathbb{N}$, $F_n \leq 1.7^n$.