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Smallest Counterexample

Suppose that we want to prove a statement of the form A→ B.

We will proceed as in proof by contradiction. That is, we assume
there is a counterexample.
Now, if the statement is a statement about natural numbers then
there will be a smallest counterexample.
Use this idea of “smallest counterexample” to derive a false
statement.
Then we have a proof of the statement by contradiction.
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Smallest Counterexample

Proof by smallest counterexample

Suppose that we want to prove a statement of the form A→ B.

1 For the sake of contradiction, assume that the statement is
false.

2 Let x be the smallest counterexample to the statement. It
must be clear that a “smallest counterexample” must exist in
the case that the statement is false.

3 (Basis Step) Check that x 6= 0. (See note on next page
concerning this important step in our proof).

4 (Step Back) Consider an instance of the result that is just
smaller than x (typically x − 1 or x/2). Then the result must
be true for this smaller value. Use this to deduce a
contradiction. (Many times, the contradiction is to show that
the result must also hold for x which we assumed it did not.)

5 Since we deduced a contradiction from our assumption that
the statement was false, it now follows that the statement is
true.
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Smallest Counterexample

Basis Step

When proving A→ B. The basis step should ensure that your
step-back value(s) will satisfy A. This is so that you may assume
B for these values and argue to a contradiction. So pay attention
to the conditions in A and make sure that you check the
correct instances of the claim to ensure that the step back
works quickly.
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Smallest Counterexample

Proposition

Every natural number n is either even or odd.

Proof.

Corollary

Every integer is either even or odd.

Proof.

Kevin James MTHSC 3190 Section 4.20



Smallest Counterexample

Proposition

Every natural number n is either even or odd.

Proof.

Corollary

Every integer is either even or odd.

Proof.

Kevin James MTHSC 3190 Section 4.20



Smallest Counterexample

Proposition

Let n ∈ N. The sum of the first n odd natural numbers is n2. That
is,

∑n
k=1(2k − 1) = n2.

Proof.
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Smallest Counterexample

Well Ordering Principle

Every nonempty set of natural numbers contains a smallest
element.

Example

1 Let XS = {x ∈ N : x is prime}. The smallest element is
.

2 Let Y = {y ∈ Q : y > 0}. Note that this set has no smallest
element.

3 Let X = {x ∈ N : x is both even and odd}. This set also
has no smallest element because it is empty.
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Smallest Counterexample

Proof by Well-ordering principle

To prove a statement S about natural numbers:

1 Let X be the set of counterexamples to S . Make sure it is
clear that X ⊆ N.

2 (Basis Step:) Check that 0 6∈ X .

3 Suppose that m ∈ X .

4 (Step Back:) Pick a natural number 0 ≤ y(m) < m (typically
y(m) = m − 1). Show that (m ∈ X ⇒ y ∈ X ). Note that it
may be easier to show the contrapositive (y 6∈ X ⇒ m 6∈ X ).

5 Note that you have proved that X ⊆ N has no smallest
element and thus is empty.
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Smallest Counterexample

Proposition

Let a 6= 0, 1. For n ∈ N,
∑n

k=0 ak = an+1−1
a−1 .
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Smallest Counterexample

Question

Which is bigger 2n or n2?

Example

Let’s see....

n 2n n2

0 1 0
1 2 1
2 4 4
3 8 9
4 16 16
5 32 25
6 64 36
7 128 49
8 256 64
9 512 81

10 1024 100
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Smallest Counterexample

Proposition

For all n ≥ 5, 2n > n2.

Proof.
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Smallest Counterexample

Definition (Recursive)

We define the Fibonacci sequence as follows.

F0 = F1 = 1; For n ≥ 2,Fn = Fn−1 + Fn−2.

Proposition

For all n ∈ N, Fn ≤ 1.7n.
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