Induction Strong Induction

MTHSC 3190 Section 4.21

Kevin James

Kevin James MTHSC 3190 Section 4.21

THEOREM (PRINCIPLE OF MATHEMATICAL INDUCTION)

Let $A \subseteq \mathbb{N}$. If 1 $0 \in A$. 2 $\forall k \in \mathbb{N}, k \in A \Rightarrow k + 1 \in A$. then

$$A = \mathbb{N}.$$

Proof.

PROOF BY INDUCTION

To prove that every natural number has some property:

- Let A be the set of natural numbers having the desired property.
- **2** Basis Step Prove that $0 \in A$.
- Brove the statement (k ∈ A ⇒ (k + 1) ∈ A).
 Note: The hypothesis that k ∈ A is called the induction hypothesis. The proof of the above statement is called the induction step.
- Use the Principle of Mathematical Induction to conclude that A = N.

PROPOSITION

Let $n \in \mathbb{N}$. Then,

$$\sum_{k=0}^{n} k^2 = \frac{(2n+1)(n+1)n}{6}$$

Proof.

We will proceed by induction on n.

Induction Strong Induction

PROPOSITION

Let $n \in \mathbb{N}$. Then,

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1.$$

Proof.

PROPOSITION

Let $n \ge 1$. Then,

$$1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1.$$

Proof.

Kevin James MTHSC 3190 Section 4.21

PROPOSITION

Let $n \in \mathbb{N}$. Then, $3|(4^n - 1)$.

Proof.

PRINCIPLE OF STRONG MATHEMATICAL INDUCTION

Let $A \subseteq \mathbb{Z}$. Suppose that we know the following.

$$M \in A.$$

$$M \in A.$$

$$M, M + 1, \dots, k\} \subseteq A \Rightarrow (k + 1) \in A.$$
Then $A = \{x \in \mathbb{Z} : x > M\}.$

PROOF BY STRONG INDUCTION

To prove all integers $x \ge M$ have some property *P*:

- 1 Let A be the set of integers having the desired property.
- **2** Basis Step Prove that $M \in A$.
- 8 Prove the statement $(\{M, M+1, ..., k\} \subseteq A \Rightarrow (k+1) \in A).$ Note: The hypothesis that $k \in A$ is called the <u>induction hypothesis</u>. The proof of the above statement is <u>called the induction step</u>.
- ④ Use the Principle of Strong Mathematical Induction to conclude that A = {x ∈ Z : x ≥ M}.

PROPOSITION

If a polygon with 4 or more sides is triangulated then at least two of the triangles formed are exterior.

Proof.

PROPOSITION

Let $n \in \mathbb{N}$. Then,

$$\sum_{j=0}^n \binom{n-j}{j} = F_n.$$

Proof.