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THEOREM (PRINCIPLE OF MATHEMATICAL INDUCTION)

Let ACN. If
@®0cA
OVkeNkeA=k+1€A.
then

A=N.
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PROOF BY INDUCTION

To prove that every natural number has some property:

@ Let A be the set of natural numbers having the desired
property.
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To prove that every natural number has some property:

@ Let A be the set of natural numbers having the desired
property.
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To prove that every natural number has some property:

@ Let A be the set of natural numbers having the desired
property.
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PROOF BY INDUCTION

To prove that every natural number has some property:

@ Let A be the set of natural numbers having the desired
property.
® Basis Step Prove that 0 € A.

® Prove the statement (k € A= (k+ 1) € A).
Note: The hypothesis that k € A is called the
induction hypothesis. The proof of the above statement is
called the induction step.
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PROOF BY INDUCTION

To prove that every natural number has some property:

@ Let A be the set of natural numbers having the desired
property.
® Basis Step Prove that 0 € A.

® Prove the statement (k € A= (k+ 1) € A).
Note: The hypothesis that k € A is called the
induction hypothesis. The proof of the above statement is
called the induction step.

@ Use the Principle of Mathematical Induction to conclude that
A=N.
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PROPOSITION
Let n € N. Then,
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PROPOSITION

Let n € N. Then,

“ > (2n+1)(n+1)n
> K= e :

k=0

PROOF.

We will proceed by induction on n.
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PROPOSITION
Let n € N. Then,

PROOF.
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PROPOSITION
Let n € N. Then,

n—1
d ok=2"-1.
k=0

Ol

PROPOSITION

Let n > 1. Then,

1-1142-204--4n-nl =(n+1)l —1.
D/




PROPOSITION

Let n € N. Then, 3|(4" —1).

PROOF.
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Strong Induction

PRINCIPLE OF STRONG MATHEMATICAL INDUCTION

Let A C Z. Suppose that we know the following.
o MeA
O MM+1,.... k} CA=(k+1) €A
Then A={x€Z : x> M}.
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Strong Induction

PROOF BY STRONG INDUCTION

To prove all integers x > M have some property P:

@ Let A be the set of integers having the desired property.
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Strong Induction

PROOF BY STRONG INDUCTION

To prove all integers x > M have some property P:

@ Let A be the set of integers having the desired property.
® Basis Step Prove that M € A.
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Strong Induction

PROOF BY STRONG INDUCTION

To prove all integers x > M have some property P:

@ Let A be the set of integers having the desired property.
® Basis Step Prove that M € A.

® Prove the statement
({M,M+1,... .k} CA= (k+1) € A).
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Strong Induction

PROOF BY STRONG INDUCTION

To prove all integers x > M have some property P:

@ Let A be the set of integers having the desired property.
® Basis Step Prove that M € A.
® Prove the statement
{M,M+1,... .k} CA=(k+1) € A).
Note: The hypothesis that k € A is called the
induction hypothesis. The proof of the above statement is
called the induction step.
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Strong Induction

PROOF BY STRONG INDUCTION

To prove all integers x > M have some property P:

@ Let A be the set of integers having the desired property.
® Basis Step Prove that M € A.
® Prove the statement
{M,M+1,... .k} CA=(k+1) € A).
Note: The hypothesis that k € A is called the
induction hypothesis. The proof of the above statement is
called the induction step.

@ Use the Principle of Strong Mathematical Induction to
conclude that A={x € Z : x> M}.
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Strong Induction

PROPOSITION

If a polygon with 4 or more sides is triangulated then at least two
of the triangles formed are exterior.

V.

PROOF.

Ol

<
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PROPOSITION

If a polygon with 4 or more sides is triangulated then at least two
of the triangles formed are exterior.

PROOF.

Ol

PROPOSITION

Let n € N. Then,

PROOF.

Ol
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