MTHSC 3190 Section 4.21

Kevin James

THEOREM (PRINCIPLE OF MATHEMATICAL INDUCTION)

Let $A \subseteq \mathbb{N}$. If

- **1** $0 \in A$.

then

$$A = \mathbb{N}$$
.

THEOREM (PRINCIPLE OF MATHEMATICAL INDUCTION)

Let $A \subseteq \mathbb{N}$. If

- **1** $0 \in A$.
- $2 \forall k \in \mathbb{N}, k \in A \Rightarrow k+1 \in A.$

then

$$A = \mathbb{N}$$
.

PROOF BY INDUCTION

To prove that every natural number has some property:

1 Let A be the set of natural numbers having the desired property.

PROOF BY INDUCTION

- 1 Let A be the set of natural numbers having the desired property.
- **2** Basis Step Prove that $0 \in A$.

PROOF BY INDUCTION

- Let A be the set of natural numbers having the desired property.
- **2** Basis Step Prove that $0 \in A$.
- **3** Prove the statement $(k \in A \Rightarrow (k+1) \in A)$.

Proof by Induction

- Let A be the set of natural numbers having the desired property.
- **2** Basis Step Prove that $0 \in A$.
- **3** Prove the statement $(k \in A \Rightarrow (k+1) \in A)$. **Note:** The hypothesis that $k \in A$ is called the induction hypothesis. The proof of the above statement is called the induction step.

Proof by Induction

- Let A be the set of natural numbers having the desired property.
- **2** Basis Step Prove that $0 \in A$.
- **8** Prove the statement $(k \in A \Rightarrow (k+1) \in A)$. **Note:** The hypothesis that $k \in A$ is called the induction hypothesis. The proof of the above statement is called the induction step.
- **1** Use the Principle of Mathematical Induction to conclude that $A = \mathbb{N}$.

Proposition

Let $n \in \mathbb{N}$. Then,

$$\sum_{k=0}^{n} k^2 = \frac{(2n+1)(n+1)n}{6}.$$

PROPOSITION

Let $n \in \mathbb{N}$. Then,

$$\sum_{k=0}^{n} k^2 = \frac{(2n+1)(n+1)n}{6}.$$

Proof.

We will proceed by induction on n.

Proposition

Let $n \in \mathbb{N}$. Then,

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1.$$

Proposition

Let $n \in \mathbb{N}$. Then,

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1.$$

Proof.

Proposition

Let $n \geq 1$. Then,

$$1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1.$$

PROPOSITION

Let $n \in \mathbb{N}$. Then, $3|(4^n - 1)$.

Principle of Strong Mathematical Induction

Let $A \subseteq \mathbb{Z}$. Suppose that we know the following.

 $\mathbf{0}$ $M \in A$.

Then $A = \{x \in \mathbb{Z} : x \geq M\}$.

To prove all integers $x \ge M$ have some property P:

1 Let A be the set of integers having the desired property.

To prove all integers $x \ge M$ have some property P:

- 1 Let A be the set of integers having the desired property.
- **2** Basis Step Prove that $M \in A$.

To prove all integers $x \ge M$ have some property P:

- 1 Let A be the set of integers having the desired property.
- **2** Basis Step Prove that $M \in A$.
- 3 Prove the statement

$$(\{M, M+1, \ldots, k\} \subseteq A \Rightarrow (k+1) \in A).$$

To prove all integers $x \ge M$ have some property P:

- 1 Let A be the set of integers having the desired property.
- **2** Basis Step Prove that $M \in A$.
- 8 Prove the statement

$$(\{M, M+1, \ldots, k\} \subseteq A \Rightarrow (k+1) \in A).$$

Note: The hypothesis that $k \in A$ is called the induction hypothesis. The proof of the above statement is called the induction step.

To prove all integers $x \ge M$ have some property P:

- 1 Let A be the set of integers having the desired property.
- **2** Basis Step Prove that $M \in A$.
- **3** Prove the statement $(\{M, M+1, \ldots, k\} \subseteq A \Rightarrow (k+1) \in A)$.

Note: The hypothesis that $k \in A$ is called the induction hypothesis. The proof of the above statement is called the induction step.

1 Use the Principle of Strong Mathematical Induction to conclude that $A = \{x \in \mathbb{Z} : x \geq M\}$.

PROPOSITION

If a polygon with 4 or more sides is triangulated then at least two of the triangles formed are exterior.

Proposition

If a polygon with 4 or more sides is triangulated then at least two of the triangles formed are exterior.

Proof.

Proposition

Let $n \in \mathbb{N}$. Then,

$$\sum_{j=0}^{n} \binom{n-j}{j} = F_n.$$