MTHSC 3190 Section 5.24

Kevin James

PROPOSITION

Let $n \in \mathbb{N}$. Then there exists integers $a \neq b$ such that $10|(n^a - n^b)$.

Proof.

Proposition

Let $n \in \mathbb{N}$. Then there exists integers $a \neq b$ such that $10 | (n^a - n^b)$.

Proof.

Proposition

Given 5 distinct integer lattice points in \mathbb{R}^2 , at least on of the line segments determined by these points has an integral midpoint.

Proof.

Proposition (Cantor)

Let A be a set. If $f: A \to 2^A$, then f is **NOT** onto.

Note

If A is finite then $|A| < |2^A| = 2^{|A|}$ and the result follows trivially from the pigeon hole principle.

Proof.

Let A be a set. We will find $B \in 2^A$ (-i.e. $B \subseteq A$) such that $B \not\in \operatorname{im}(f)$.

Proposition (Cantor)

Let A be a set. If $f: A \to 2^A$, then f is **NOT** onto.

Note

If A is finite then $|A| < |2^A| = 2^{|A|}$ and the result follows trivially from the pigeon hole principle.

Proof.

Let A be a set. We will find $B \in 2^A$ (-i.e. $B \subseteq A$) such that $B \notin \text{im}(f)$.

Take $B = \{x \in A : x \notin f(x)\}.$

Proposition (Cantor)

Let A be a set. If $f: A \to 2^A$, then f is **NOT** onto.

Note

If A is finite then $|A| < |2^A| = 2^{|A|}$ and the result follows trivially from the pigeon hole principle.

Proof.

Let A be a set. We will find $B \in 2^A$ (-i.e. $B \subseteq A$) such that $B \not\in \operatorname{im}(f)$.

Take $B = \{x \in A : x \notin f(x)\}.$

Claim: $B \notin im(f)$.

Proof:

