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Proposition

Let n ∈ N. Then there exists integers a 6= b such that 10|(na− nb).

Proof.

Proposition

Given 5 distinct integer lattice points in R2, at least on of the line
segments determined by these points has an integral midpoint.

Proof.
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Proposition (Cantor)

Let A be a set. If f : A→ 2A. then f is NOT onto.

Note

If A is finite then |A| < |2A| = 2|A| and the result follows trivially
from the pigeon hole principle.

Proof.

Let A be a set. We will find B ∈ 2A (-i.e. B ⊆ A) such that
B 6∈ im(f ).

Take B = {x ∈ A : x 6∈ f (x)}.
Claim: B 6∈ im(f ).
Proof:
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