MTHSC 3190 Section Limits and Functions

Kevin James

Kevin James MTHSC 3190 Section Limits and Functions

DEFINITION (THE LIMIT)

Suppose that $f : \mathbb{R} \to \mathbb{R}$ and that $a, L \in \mathbb{R}$. We write

$$\lim_{x\to a} f(x) = L.$$

 $\text{if }\forall \epsilon > 0, \exists \delta > 0, \forall |x - a| < \delta, |f(x) - L| < \epsilon.$

EXAMPLE

- 1 Show that $\lim_{x\to 3}(5x+2) = 17$.
- 2 Show that $\lim_{x\to 2} (x^2 + 2) = 6$.

DEFINITION

Suppose that $f : \mathbb{R} \to \mathbb{R}$ and that $a \in \mathbb{R}$.

1 We say that f is continuous at a if

$$\lim_{x\to a}f(x)=f(a).$$

2 We say that f is continuous everywhere in \mathbb{R} if $\forall a \in \mathbb{R}, f$ is continuous at a.

EXAMPLE

- 1 Show that f(x) = x + 3 is continuous at 4.
- 2 Show that $f(x) = x^2 + 2$ is continuous at 1.
- **3** Show that f(x) = x + 1 is continuous everywhere.

EXERCISE

- 1 Show that f(x) = 5x + 3 is continuous at 2.
- **2** Show that f(x) = 5x + 3 is continuous everywhere in \mathbb{R} .

Definition

Suppose that $*:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ is a binary operator on $\mathbb{R}.$

1 If, $(a, b) \in \mathbb{R}^2$ and $L \in \mathbb{R}$, we write

$$\lim_{(x,y)\to(a,b)}x*y=L$$

if $\forall \epsilon > 0, \exists \delta > 0, \forall (x, y)$ satisfying $\sqrt{(x - a)^2 + (y - b)^2} < \delta, |x * y - L| < \epsilon.$

- If (a, b) ∈ ℝ², we say that * is continuous at (a, b) if lim_{(x,y)→(a,b)} x * y = a * b.
- **3** We say that * is a continuous operation on \mathbb{R} if $\forall (a, b) \in \mathbb{R}^2, *$ is continuous at (a, b).

EXERCISE

- **1** Show that addition is a continuous operation on \mathbb{R} .
- **2** Show that multiplication is a containuous operation on \mathbb{R} .