MTHSC 3190 Section Limits and Functions

Kevin James

DEFINITION (THE LIMIT)

Suppose that $f : \mathbb{R} \to \mathbb{R}$ and that $a, L \in \mathbb{R}$. We write

$$\lim_{x\to a} f(x) = L.$$

if
$$\forall \epsilon > 0, \exists \delta > 0, \forall |x - a| < \delta, |f(x) - L| < \epsilon$$
.

DEFINITION (THE LIMIT)

Suppose that $f: \mathbb{R} \to \mathbb{R}$ and that $a, L \in \mathbb{R}$. We write

$$\lim_{x\to a}f(x)=L.$$

if $\forall \epsilon > 0, \exists \delta > 0, \forall |x - a| < \delta, |f(x) - L| < \epsilon$.

EXAMPLE

1 Show that $\lim_{x\to 3} (5x+2) = 17$.

DEFINITION (THE LIMIT)

Suppose that $f: \mathbb{R} \to \mathbb{R}$ and that $a, L \in \mathbb{R}$. We write

$$\lim_{x\to a}f(x)=L.$$

if $\forall \epsilon > 0, \exists \delta > 0, \forall |x - a| < \delta, |f(x) - L| < \epsilon$.

EXAMPLE

- **1** Show that $\lim_{x\to 3} (5x + 2) = 17$.
- **2** Show that $\lim_{x\to 2} (x^2 + 2) = 6$.

Suppose that $f: \mathbb{R} \to \mathbb{R}$ and that $a \in \mathbb{R}$.

 \bullet We say that f is continuous at a if

$$\lim_{x\to a} f(x) = f(a).$$

Suppose that $f: \mathbb{R} \to \mathbb{R}$ and that $a \in \mathbb{R}$.

1 We say that f is continuous at a if

$$\lim_{x\to a} f(x) = f(a).$$

2 We say that f is continuous everywhere in \mathbb{R} if $\forall a \in \mathbb{R}, f$ is continuous at a.

Suppose that $f: \mathbb{R} \to \mathbb{R}$ and that $a \in \mathbb{R}$.

 \bigcirc We say that f is continuous at a if

$$\lim_{x\to a} f(x) = f(a).$$

2 We say that f is continuous everywhere in \mathbb{R} if $\forall a \in \mathbb{R}, f$ is continuous at a.

EXAMPLE

1 Show that f(x) = x + 3 is continuous at 4.

Suppose that $f: \mathbb{R} \to \mathbb{R}$ and that $a \in \mathbb{R}$.

1 We say that f is continuous at a if

$$\lim_{x\to a} f(x) = f(a).$$

2 We say that f is continuous everywhere in \mathbb{R} if $\forall a \in \mathbb{R}, f$ is continuous at a.

EXAMPLE

- **1** Show that f(x) = x + 3 is continuous at 4.
- 2 Show that $f(x) = x^2 + 2$ is continuous at 1.

Suppose that $f: \mathbb{R} \to \mathbb{R}$ and that $a \in \mathbb{R}$.

1 We say that f is continuous at a if

$$\lim_{x\to a} f(x) = f(a).$$

2 We say that f is continuous everywhere in \mathbb{R} if $\forall a \in \mathbb{R}, f$ is continuous at a.

EXAMPLE

- **1** Show that f(x) = x + 3 is continuous at 4.
- 2 Show that $f(x) = x^2 + 2$ is continuous at 1.
- 3 Show that f(x) = x + 1 is continuous everywhere.

EXERCISE

- ① Show that f(x) = 5x + 3 is continuous at 2.
- 2 Show that f(x) = 5x + 3 is continuous everywhere in \mathbb{R} .

Suppose that $* : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a binary operator on \mathbb{R} .

1 If, $(a,b) \in \mathbb{R}^2$ and $L \in \mathbb{R}$, we write

$$\lim_{(x,y)\to(a,b)}x*y=L$$

if
$$\forall \epsilon > 0, \exists \delta > 0, \forall (x,y)$$
 satisfying $\sqrt{(x-a)^2 + (y-b)^2} < \delta, |x*y-L| < \epsilon$.

Definition

Suppose that $* : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a binary operator on \mathbb{R} .

1 If, $(a,b) \in \mathbb{R}^2$ and $L \in \mathbb{R}$, we write

$$\lim_{(x,y)\to(a,b)} x * y = L$$

if
$$\forall \epsilon > 0, \exists \delta > 0, \forall (x,y)$$
 satisfying $\sqrt{(x-a)^2 + (y-b)^2} < \delta, |x*y-L| < \epsilon$.

2 If $(a, b) \in \mathbb{R}^2$, we say that * is continuous at (a, b) if $\lim_{(x,y)\to(a,b)} x * y = a * b$.

Suppose that $* : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a binary operator on \mathbb{R} .

1 If, $(a, b) \in \mathbb{R}^2$ and $L \in \mathbb{R}$, we write

$$\lim_{(x,y)\to(a,b)} x * y = L$$

if $\forall \epsilon > 0, \exists \delta > 0, \forall (x,y)$ satisfying $\sqrt{(x-a)^2 + (y-b)^2} < \delta, |x*y-L| < \epsilon$.

- 2 If $(a, b) \in \mathbb{R}^2$, we say that * is continuous at (a, b) if $\lim_{(x,y)\to(a,b)} x * y = a * b$.
- **3** We say that * is a continuous operation on \mathbb{R} if $\forall (a,b) \in \mathbb{R}^2, *$ is continuous at (a,b).

Suppose that $* : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a binary operator on \mathbb{R} .

1 If, $(a,b) \in \mathbb{R}^2$ and $L \in \mathbb{R}$, we write

$$\lim_{(x,y)\to(a,b)} x * y = L$$

if
$$\forall \epsilon > 0, \exists \delta > 0, \forall (x,y)$$
 satisfying $\sqrt{(x-a)^2 + (y-b)^2} < \delta, |x*y-L| < \epsilon$.

- ② If $(a, b) \in \mathbb{R}^2$, we say that * is continuous at (a, b) if $\lim_{(x,y)\to(a,b)} x * y = a * b$.
- **3** We say that * is a continuous operation on \mathbb{R} if $\forall (a,b) \in \mathbb{R}^2, *$ is continuous at (a,b).

EXERCISE

- **1** Show that addition is a continuous operation on \mathbb{R} .
- 2 Show that multiplication is a containuous operation on \mathbb{R} .

