EXAMPLES OF PROVING LIMITS OF FUNCTIONS AND OPERATORS.

KEVIN JAMES

1. LIMITS OF LINEAR FUNCTIONS

Suppose that $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x + 5.

Claim: $\lim_{x\to 2} (3x+5) = 11$.

Scratch Work: We will need to show that $|(3x+5)-11| < \epsilon$ provided that $|x-2| < \delta$ where we get to choose δ .

$$|(3x+5) - 11| = |3x - 6| < 3|x - 2| < 3\delta.$$

In order for $3\delta < \epsilon$, we simply need $\delta \leq \epsilon/3$.

Proof: Let $\epsilon > 0$ be given. Take $\delta = \epsilon/3$. Let $|x - 2| < \delta$. Then we have

$$\begin{array}{rcl} |(3x+5)-11| &=& |3x-6|=3|x-2| \\ &<& 3\delta=\epsilon \end{array}$$

Thus, $\lim_{x\to 2} (3x+5) = 11$

Now let's prove something a little bit more difficult.

Claim: f(x) is continuous.

Scratch Work: In order to prove the claim, we need to show that f is continuous at $a \in \mathbb{R}$ for all a. That is, we need to show for arbitrary $a \in \mathbb{R}$ that $\lim_{x\to a} f(x) = f(a)$. In order to do this we will need to show that $|f(x) - f(a)| < \epsilon$ provided that $|x - a| < \delta$.

$$|f(x) - f(a)| = |(3x + 5) - (3a + 5)| = |3x - 3a| = 3|x - a| < 3\delta$$

So, in order to make $|f(x) - f(a)| < \epsilon$ provided that $|x - a| < \delta$ if is sufficient to take $\delta = \epsilon/3$. Notice the similarity to the argument before.

	_	٦
		I
		I

Date: December 4, 2013.

Proof: Let $a \in \mathbb{R}$. Let $\epsilon > 0$ be given. Take $\delta = \epsilon/3$. Let $|x - a| < \delta$. Then we have

$$|(3x+5) - (3a+5)| = |3x - 3a| = 3|x - a| < 3\delta = \epsilon$$

Thus, $\lim_{x \to a} f(x) = \lim_{x \to a} (3x + 5) = f(a)$

2. Limits of Quadratic functions

Now we will work with a little bit more difficult function. Let $g : \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = 2x^2 + x + 3$.

Claim: $\lim_{x \to 2} g(x) = 13.$

Scratch: For $|x-2| < \delta$, we will need to show that $|g(x) - 13| < \epsilon$ where ϵ is arbitrary.

$$\begin{array}{rcl} g(x) - 13| &= & |(2x^2 + x + 3) - 13| = |2x^2 + x - 10| \\ &= & |(2x + 5)(x - 2)| = |2x + 5||x - 2| \\ &< & |2x + 5|\delta = |2(x - 2) + 9|\delta \\ &\leq & (2|x - 2| + 9)\,\delta \quad \text{(by the triangle inequality)} \\ &< & (2\delta + 9)\,\delta = 2\delta^2 + 9\delta \\ &< & 2\delta + 9\delta \quad \text{(provided that } \delta < 1) \\ &= & 11\delta. \end{array}$$

Thus we must ensure that $\delta < 1$ and that $\delta \leq \epsilon/11$.

Proof: Let $\epsilon > 0$ be given. Take $\delta = \operatorname{Min}(1/2, \epsilon/11)$. Suppose that $|x - 2| < \delta$. Then,

$$\begin{aligned} |g(x) - 13| &= |(2x^2 + x + 3) - 13| = |2x^2 + x - 10| \\ &= |2x + 5||x - 2| \\ &< |2x + 5|\delta = |2(x - 2) + 9|\delta \\ &\leq (2|x - 2| + 9)\delta \quad \text{(by the triangle inequality)} \\ &< (2\delta + 9)\delta = 2\delta^2 + 9\delta \\ &< 2\delta + 9\delta \quad \text{(because } \delta < 1) \\ &= 11\delta < \epsilon \quad \text{because } \delta \le \epsilon/11 \end{aligned}$$

Thus, $\lim_{x\to 2} g(x) = 13$.

-		

Let us now prove that g(x) is a continuous function. As in the previous section, the argument will resemble the proof that we just completed.

Claim: g(x) is continuous on all of \mathbb{R} .

Proof: Suppose that $a \in \mathbb{R}$. Let $\epsilon > 0$ be given. Take $\delta = \operatorname{Min}(\frac{1}{2}, \frac{\epsilon}{(|4a+1|+2)})$. Suppose that $|x - a| < \delta$. Then,

$$\begin{split} |g(x) - g(a)| &= |(2x^2 + x + 3) - (2a^2 + a + 3)| = |2(x^2 - a^2) + (x - a)| \\ &= |2(x + a)(x - a) + (x - a)| = |x - a||2(x + a) + 1| \\ &< |2(x + a) + 1|\delta = |2(x - a + 2a) + 1|\delta = |2(x - a) + 4a + 1|\delta \\ &\leq (2|x - a| + |4a + 1|) \delta \quad \text{(by the triangle inequality)} \\ &< (2\delta + |4a + 1|) \delta = 2\delta^2 + |4a + 1|\delta \\ &< 2\delta + |4a + 1|\delta \quad \text{(because } \delta < 1) \\ &= (|4a + 1| + 2)|\delta < \epsilon \quad \text{because } \delta \le \frac{\epsilon}{|4a + 1| + 2} \end{split}$$

Thus, we have shown for all $a \in \mathbb{R}$ that

$$\lim_{x \to a} g(x) = g(a)$$

So, g(x) is continuous on all of \mathbb{R} .

3. Continuity of Operators

We will conclude with an example of a continuous operator on \mathbb{R} . Define a binary operation * on \mathbb{R} but x * y = xy + x + y + 7.

Claim: The operation * is continuous on \mathbb{R} .

Scratch: We will need to show for all $(a, b) \in \mathbb{R}^2$ that $\lim_{(x,y)\to(a,b)} x * y = a * b$. So, given that $\sqrt{(x-a)^2 + (y-b)^2} < \delta$ we will need to show that $|x * y - a * b| < \epsilon$. We first note that

$$\begin{split} \sqrt{(x-a)^2 + (y-b)^2} < \delta & \Rightarrow \quad (x-a)^2 + (y-b)^2 < \delta^2 \\ & \Rightarrow \quad (x-a)^2 < \delta^2 \quad \text{and} \quad (y-b)^2 < \delta^2 \\ & \Rightarrow \quad |x-a| < \delta \quad \text{and} \quad |y-b| < \delta \end{split}$$

So, we have

$$\begin{split} |x * y - a * b| &= |(xy + x + y + 7) - (ab + a + b + 7)| = |(xy - ab) + (x - a) + (y - b)| \\ &\leq |xy - ab| + |x - a| + |y - b| \quad \text{by the triangle inequality} \\ &< |xy - ab| + 2\delta \quad \text{since } |x - a| < \delta \text{ and } |y - b| < \delta \\ &= |(x - a)(y - b) + b(x - a) + a(y - b)| + 2\delta \\ &\leq |x - a||y - b| + |b||x - a| + |a||y - b| + 2\delta \quad \text{by the triangle inequality} \\ &< \delta^2 + |b|\delta + |a|\delta + 2\delta \quad \text{since } |x - a| < \delta \text{ and } |y - b| < \delta \\ &< \delta + |b|\delta + |a|\delta + 2\delta \quad \text{provided } \delta < 1 \\ &= (|a| + |b| + 3) \, \delta. \end{split}$$

So, we just need to ensure that $\delta < 1$ and $\delta \leq \frac{\epsilon}{|a|+|b|+3}$.

Proof: Suppose that $(a, b) \in \mathbb{R}^2$. Let $\epsilon > 0$ be given. Take $\delta = \operatorname{Min}\left(\frac{1}{2}, \frac{\epsilon}{|a|+|b|+3}\right)$. Suppose that (x, y) satisfies $\sqrt{(x-a)^2 + (y-b)^2} < \delta$. First, we note that

$$\sqrt{(x-a)^2 + (y-b)^2} < \delta \implies (x-a)^2 + (y-b)^2 < \delta^2$$
$$\implies (x-a)^2 < \delta^2 \text{ and } (y-b)^2 < \delta^2$$
$$\implies |x-a| < \delta \text{ and } |y-b| < \delta$$

Thus,

$$\begin{split} |x \ast y - a \ast b| &= |(xy + x + y + 7) - (ab + a + b + 7)| = |(xy - ab) + (x - a) + (y - b)| \\ &\leq |xy - ab| + |x - a| + |y - b| \qquad \text{by the triangle inequality} \\ &< |xy - ab| + 2\delta \qquad \text{since } |x - a| < \delta \text{ and } |y - b| < \delta \\ &= |(x - a)(y - b) + b(x - a) + a(y - b)| + 2\delta \\ &\leq |x - a||y - b| + |b||x - a| + |a||y - b| + 2\delta \qquad \text{by the triangle inequality} \\ &< \delta^2 + |b|\delta + |a|\delta + 2\delta \qquad \text{since } |x - a| < \delta \text{ and } |y - b| < \delta \\ &< \delta + |b|\delta + |a|\delta + 2\delta \qquad \text{since } \delta < 1 \\ &= (|a| + |b| + 3) \delta \\ &\leq \epsilon \qquad \text{because } \delta \leq \frac{\epsilon}{|a| + |b| + 3}. \end{split}$$

Thus for any $(a, b) \in \mathbb{R}^2$,

$$\lim_{(x,y)\to(a,b)}x*y=a*b,$$

and thus we have shown that \ast is continuous on all of $\mathbb R$